论文标题

表面边缘资源管理器(请参阅):下一个最佳视图计划的测量直接方法

The Surface Edge Explorer (SEE): A measurement-direct approach to next best view planning

论文作者

Border, Rowan, Gammell, Jonathan D.

论文摘要

对现实世界的高质量观​​察对于各种应用至关重要,包括生产小规模场景的3D印刷复制品以及对大型基础设施的检查。这些3D观察通常是通过结合来自不同观点的多个传感器测量值来获得的。指导选择合适的观点被称为NBV计划问题。 大多数NBV都使用刚性数据结构(例如表面网格或体素电网)进行测量的原因。这简化了下一个最佳视图选择,但可能在计算上昂贵,减少了现实世界的保真度,并将最终数据处理的下一个最佳视图选择。 本文介绍了Surface Edge Explorer,这是一种NBV方法,它直接从先前的传感器测量值中选择了新的观测值,而无需刚性数据结构。请参阅使用测量密度,以提出下一个最佳视图,以增加观察到的表面不足的覆盖范围,同时避免潜在的遮挡。模拟实验的统计结果表明,与评估的小规模场景相比,SEE可以获得相似或更好的表面覆盖范围,而观察时间和旅行距离较少,而旅行距离较小。现实世界实验表明,请参见自主观察使用机器人臂上的3D传感器观察鹿雕像。

High-quality observations of the real world are crucial for a variety of applications, including producing 3D printed replicas of small-scale scenes and conducting inspections of large-scale infrastructure. These 3D observations are commonly obtained by combining multiple sensor measurements from different views. Guiding the selection of suitable views is known as the NBV planning problem. Most NBV approaches reason about measurements using rigid data structures (e.g., surface meshes or voxel grids). This simplifies next best view selection but can be computationally expensive, reduces real-world fidelity, and couples the selection of a next best view with the final data processing. This paper presents the Surface Edge Explorer, a NBV approach that selects new observations directly from previous sensor measurements without requiring rigid data structures. SEE uses measurement density to propose next best views that increase coverage of insufficiently observed surfaces while avoiding potential occlusions. Statistical results from simulated experiments show that SEE can attain similar or better surface coverage with less observation time and travel distance than evaluated volumetric approaches on both small- and large-scale scenes. Real-world experiments demonstrate SEE autonomously observing a deer statue using a 3D sensor affixed to a robotic arm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源