论文标题
真正的多部分非局部性的巧合后:因果图和阈值效率
Coincidence postselection for genuine multipartite nonlocality: Causal diagrams and threshold efficiencies
论文作者
论文摘要
真正的多部分非局部性(GMN)是描述所有实验方之间完全集体非局部相关性的最强形式的多部分非局部性形式,可以观察到当不同远处的各方从共享的纠缠多个晶状体状态中测量粒子时,可以观察到。为了证明GMN,通常会发布实验观察到的统计数据:某些当事方未检测到粒子的事件必须被丢弃。这种巧合的选择后通常会导致检测漏洞,从而使适当的非局部示范无效。在这项工作中,我们解决了如何在表现非局部性和GMN的情况下关闭检测漏洞以进行巧合检测。我们首先表明,如果检测到的颗粒的数量是保守的,即使用理想且无噪声的实验设备,则可以使用因果图,而无信号原理可以证明偶然的选择后选择不会产生任何检测漏洞。此外,对于具有有限检测效率的现实实验设备,我们展示了如何将一般的铃铛不等式提高,以使其新版本在测量数据后的选择后仍然有效。在这种情况下,有阈值检测效率,如果在实验中超过了阈值,则可能导致可能在不打开检测漏洞的情况下证明非局部性和GMN。我们的结果表明,即使允许非理想探测器,也可以从$ n $独立的粒子来源产生真正的$ n $ partite非局部性。
Genuine multipartite nonlocality (GMN), the strongest form of multipartite nonlocality that describes fully collective nonlocal correlations among all experimental parties, can be observed when different distant parties each locally measure a particle from a shared entangled many-particle state. For the demonstration of GMN, the experimentally observed statistics are typically postselected: Events for which some parties do not detect a particle must be discarded. This coincidence postselection generally leads to the detection loophole that invalidates a proper nonlocality demonstration. In this work, we address how to close the detection loophole for a coincidence detection in demonstrations of nonlocality and GMN. We first show that if the number of detected particles is conserved, i.e., using ideal and noiseless experimental devices, one can employ causal diagrams and the no-signalling principle to prove that a coincidence postselection cannot create any detection loophole. Furthermore, for realistic experimental devices with finite detection efficiencies, we show how a general Bell inequality can be sharpened such that its new version is still valid after a postselection of the measurement data. In this case, there are threshold detection efficiencies that, if surpassed in the experiment, lead to the possibility to demonstrate nonlocality and GMN without opening the detection loophole. Our results imply that genuine $N$-partite nonlocality can be generated from $N$ independent particle sources even when allowing for non-ideal detectors.