论文标题
Snell的定律通过Finsler几何学重新审视和概括
Snell's law revisited and generalized via Finsler Geometry
论文作者
论文摘要
我们研究了属于不同各向异性介质的两个点之间最快路径的变化问题,每个介质都有规定的速度轮廓和一个共同的界面。最佳曲线是Finsler Geodesics,由于其速度不连续,它们通过界面时被折射 - 破裂。这种“破裂”必须根据速度概况定义的鳍指标来满足特定条件,从而确立广义的Snell定律。以同样的方式,最佳路径从界面中弹起 - 而无需越过第二个领域 - 提供了广义的反思定律。当速度是各向同性时,在这种情况下,经典的Snell和反射定律将恢复。如果人们考虑了从给定的点火点向所有方向传播的波浪,则在全球范围内使旅行时间最小化的轨迹在每个时间的瞬间都会产生波前。我们详细研究了具有各向异性速度曲线的欧几里得平面中此类波前的全球性质。像单个射线一样,当遇到不连续界面时,它们会破裂。但是由于切割基因座的形成 - 源于波前的自我交流,它们也被打破了 - 通常,当它们从低速剖面接近高速轮廓域时,它们通常会出现。
We study the variational problem of finding the fastest path between two points that belong to different anisotropic media, each with a prescribed speed profile and a common interface. The optimal curves are Finsler geodesics that are refracted -- broken -- as they pass through the interface, due to the discontinuity of their velocities. This "breaking" must satisfy a specific condition in terms of the Finsler metrics defined by the speed profiles, thus establishing the generalized Snell's law. In the same way, optimal paths bouncing off the interface -- without crossing into the second domain -- provide the generalized law of reflection. The classical Snell's and reflection laws are recovered in this setting when the velocities are isotropic. If one considers a wave that propagates in all directions from a given ignition point, the trajectories that globally minimize the traveltime generate the wavefront at each instant of time. We study in detail the global properties of such wavefronts in the Euclidean plane with anisotropic speed profiles. Like the individual rays, they break when they encounter the discontinuity interface. But they are also broken due to the formation of cut loci -- stemming from the self-intersection of the wavefronts -- which typically appear when they approach a high-speed profile domain from a low-speed profile.