论文标题
一些QCH Kahler表面,标量为零
Some QCH Kahler surfaces with zero scalar curvature
论文作者
论文摘要
在本文中,我们证明了一些众所周知的Kähler表面为零标态曲率是QCHKähler。我们证明,由$ k \ in [-1,1] $参数为$ k \ in(-1,1)$的矫正类型的广义taub-nutkähler表面和$ k \ in \ in \ { - 1,1 \} $的$ k \ in(-1,1,1)$的矫正型类型和burn burn的burn burnic istric is of Calabi类型。
In this paper we prove that some well known Kähler surfaces with zero scalar curvature are QCH Kähler. We prove that family of generalized Taub-Nut Kähler surfaces parametrized by $k\in[-1,1]$ is of orthotoric type for $k\in(-1,1)$ and of Calabi type for $k\in\{-1,1\}$ and the Burn's metric is of Calabi type.