论文标题
使用$ \ text {t} \ bar {\ text {t}} $+喷气事件在$ \ sqrt {s s} = 13 $ tev中测量顶级夸克杆质量
Measurement of the top quark pole mass using $\text{t}\bar{\text{t}}$+jet events in the dilepton final state at $\sqrt{s}=13$ TeV
论文作者
论文摘要
在这些会议记录中,对顶级夸克 - 易夸克对的差分横截面($ \ text {t} \ bar {\ bar {\ text {t}} $)的生产与另一条喷气$ \ text {t} \ bar {\ text {t}} $+喷气系统,$ρ= 340 \,\ text {gev}/m _ {\ text {t} \ bar {\ bar {\ text {t}}}}}}}+\ text {jet}} $,呈现。归一化的$ \ text {t} \ bar {\ text {t}} $+喷气横截面用于提取顶级夸克极质量$ m _ {\ text {t}}^{\ text {t} {\ text {pole {pole}} $的值,通过与次级领先订单的理论预测进行比较。所使用的数据集对应于proton--proton碰撞的36.3fb $^{ - 1} $的集成光度,如CMS实验收集的$ \ sqrt {s} = $ 13 tev。分析具有两个相对灯笼的事件。使用机器学习技术来改善主观测和事件分类的运动学重建。使用剖面的可能性拟合进行了对Parton级别的展开。给定的ABMP16 Parton分布可作为参考集,一个$ m _ {\ text {t}}}^{\ text {pole}} = 172.94 \ pm1.37 \,\ pm1.37 \,\ text {gev} $的值是使用正常化的$ \ \ \ \ \ bar jot} =
In these proceedings, a measurement of the differential cross section of top quark-antiquark pair ($\text{t}\bar{\text{t}}$) production in association with one additional jet ($\text{t}\bar{\text{t}}$+jet) as a function of the inverse of the invariant mass of the $\text{t}\bar{\text{t}}$+jet system, $ρ=340\,\text{GeV}/m_{\text{t}\bar{\text{t}}+\text{jet}}$, is presented. The normalized $\text{t}\bar{\text{t}}$+jet cross section is used to extract values for the top quark pole mass $m_{\text{t}}^{\text{pole}}$ by a comparison to theoretical predictions at next-to-leading order accuracy. The used data set corresponds to an integrated luminosity of 36.3fb$^{-1}$ of proton--proton collisions as collected by the CMS experiment at $\sqrt{s}=$ 13 TeV. Events with two opposite-sign leptons are analyzed. Machine learning techniques are employed to improve the kinematic reconstruction of the main observable and the event classification. The unfolding to the parton level is performed using a profiled likelihood fit. Given the ABMP16 parton distribution functions as a reference set, a value of $m_{\text{t}}^{\text{pole}}=172.94\pm1.37\,\text{GeV}$ is extracted using the normalized $\text{t}\bar{\text{t}}$+jet cross section.