论文标题
石墨烯中的介质klein-schwinger效应
Mesoscopic Klein-Schwinger effect in graphene
论文作者
论文摘要
通过粒子 - 抗粒子对创建(也称为schwinger效应)的强电场灭绝是量子电动力学的非扰动预测。它的实验演示仍然难以捉摸,因为阈值电场非常强大并且超出了当前的影响力。在这里,我们提出了石墨烯中Schwinger效应的介质变体,该变体托有具有近似电子孔对称性的Dirac Fermions。使用运输测量值,我们在弹道石墨烯晶体管的Pinchoff上报告了通用的1D-SCHINGER电导。强的Pinchoff电场集中在大约1 $ $ m $ m的晶体管排水管中,并在饱和度中诱导Schwinger Electron-hole孔对创建。这种效果是针对欧姆齐纳(ohmic Zener)制度的集体不稳定的,该制度在长达设备中的Pinchoff电压的两倍被拒绝。这些观察结果提高了我们对弹道石墨烯中当前饱和度限制的理解,并为实验室中进一步的量子电动力实验提供了方向。
Strong electric field annihilation by particle-antiparticle pair creation, also known as the Schwinger effect, is a non-perturbative prediction of quantum electrodynamics. Its experimental demonstration remains elusive, as threshold electric fields are extremely strong and beyond current reach. Here, we propose a mesoscopic variant of the Schwinger effect in graphene, which hosts Dirac fermions with an approximate electron-hole symmetry. Using transport measurements, we report on universal 1d-Schwinger conductance at the pinchoff of ballistic graphene transistors. Strong pinchoff electric fields are concentrated within approximately 1 $μ$m of the transistor's drain, and induce Schwinger electron-hole pair creation at saturation. This effect precedes a collective instability toward an ohmic Zener regime, which is rejected at twice the pinchoff voltage in long devices. These observations advance our understanding of current saturation limits in ballistic graphene and provide a direction for further quantum electrodynamic experiments in the laboratory.