论文标题
PointFix:学习解决域偏差以构成强大的在线立体声改编
PointFix: Learning to Fix Domain Bias for Robust Online Stereo Adaptation
论文作者
论文摘要
在线立体声适应解决了由合成(训练)和真实(测试)数据集之间不同环境引起的域移位问题,以迅速在动态现实世界中(例如自动驾驶)中调整立体声模型。但是,以前的方法通常无法抵消与动态物体有关的特定区域,并具有更严重的环境变化。为了减轻此问题,我们建议将辅助点选择性网络纳入一个称为PointFix的元学习框架中,以提供对在线立体调整的立体声模型的强大初始化。简而言之,我们的辅助网络学会通过通过元级级别有效地反向传播局部信息来深入固定本地变体,从而实现基线模型的强大初始化。该网络是模型不合时宜的,因此可以以任何插件的方式以任何形式的体系结构使用。我们进行了广泛的实验,以在三个适应设置(例如短期,中期和长期序列)下验证方法的有效性。实验结果表明,辅助网络对基本立体声模型的适当初始化使我们的学习范式在推理时可以实现最新的性能。
Online stereo adaptation tackles the domain shift problem, caused by different environments between synthetic (training) and real (test) datasets, to promptly adapt stereo models in dynamic real-world applications such as autonomous driving. However, previous methods often fail to counteract particular regions related to dynamic objects with more severe environmental changes. To mitigate this issue, we propose to incorporate an auxiliary point-selective network into a meta-learning framework, called PointFix, to provide a robust initialization of stereo models for online stereo adaptation. In a nutshell, our auxiliary network learns to fix local variants intensively by effectively back-propagating local information through the meta-gradient for the robust initialization of the baseline model. This network is model-agnostic, so can be used in any kind of architectures in a plug-and-play manner. We conduct extensive experiments to verify the effectiveness of our method under three adaptation settings such as short-, mid-, and long-term sequences. Experimental results show that the proper initialization of the base stereo model by the auxiliary network enables our learning paradigm to achieve state-of-the-art performance at inference.