论文标题
从最小注释中估计实例特定的6-DOF对象姿势效果
Instance-specific 6-DoF Object Pose Estimation from Minimal Annotations
论文作者
论文摘要
在许多机器人应用中,要执行的已知,刚性物体及其随后的抓握的姿势估计的环境设置将几乎保持不变,甚至可能是机器人事先知道的。在本文中,我们将此问题称为特定实例的姿势估计:只有在有限的一组熟悉的场景中,该机器人有望以高度准确性估算姿势。场景中的微小变化,包括照明条件和背景外观的变化,是可以接受的,但没有预期的改变。为此,我们提出了一种方法来快速训练和部署管道,以估算单个RGB图像的对象的连续6-DOF姿势。关键的想法是利用已知的相机姿势和刚性的身体几何形状部分自动化大型标记数据集的生成。然后,数据集以及足够的域随机化来监督深度神经网络的培训,以预测语义关键。在实验上,我们证明了我们提出的方法的便利性和有效性,以准确估计物体姿势,仅需要少量的手动注释才能进行训练。
In many robotic applications, the environment setting in which the 6-DoF pose estimation of a known, rigid object and its subsequent grasping is to be performed, remains nearly unchanging and might even be known to the robot in advance. In this paper, we refer to this problem as instance-specific pose estimation: the robot is expected to estimate the pose with a high degree of accuracy in only a limited set of familiar scenarios. Minor changes in the scene, including variations in lighting conditions and background appearance, are acceptable but drastic alterations are not anticipated. To this end, we present a method to rapidly train and deploy a pipeline for estimating the continuous 6-DoF pose of an object from a single RGB image. The key idea is to leverage known camera poses and rigid body geometry to partially automate the generation of a large labeled dataset. The dataset, along with sufficient domain randomization, is then used to supervise the training of deep neural networks for predicting semantic keypoints. Experimentally, we demonstrate the convenience and effectiveness of our proposed method to accurately estimate object pose requiring only a very small amount of manual annotation for training.