论文标题

修复贝叶斯神经网络的一个简单技巧

One Simple Trick to Fix Your Bayesian Neural Network

论文作者

Tempczyk, Piotr, Smoczyński, Ksawery, Smolenski-Jensen, Philip, Cygan, Marek

论文摘要

贝叶斯神经网络(BNN)中最流行的估计方法之一是平均场变异推理(MFVI)。在这项工作中,我们表明具有RELU激活功能的神经网络会诱导后代,而后者很难与MFVI相吻合。我们为这种现象提供了理论上的理由,通过经验研究,并报告了一系列实验的结果,以研究激活函数对BNNS校准的影响。我们发现,使用泄漏的恢复激活会导致高斯的重量后代更多,并且比基于RELU的对应物的预期校准误差(ECE)较低。

One of the most popular estimation methods in Bayesian neural networks (BNN) is mean-field variational inference (MFVI). In this work, we show that neural networks with ReLU activation function induce posteriors, that are hard to fit with MFVI. We provide a theoretical justification for this phenomenon, study it empirically, and report the results of a series of experiments to investigate the effect of activation function on the calibration of BNNs. We find that using Leaky ReLU activations leads to more Gaussian-like weight posteriors and achieves a lower expected calibration error (ECE) than its ReLU-based counterpart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源