论文标题

贝叶斯证据学习,用于几次分类

Bayesian Evidential Learning for Few-Shot Classification

论文作者

Linghu, Xiongkun, Bai, Yan, Lou, Yihang, Wu, Shengsen, Li, Jinze, He, Jianzhong, Bai, Tao

论文摘要

几乎没有射击分类(FSC)旨在从基类概括到具有非常有限的标签样品的新型类别,这是通往类人类机器学习的道路的重要一步。最先进的解决方案涉及学习找到一个良好的度量和表示空间,以计算样品之间的距离。尽管精确性的性能令人鼓舞,但如何有效地为基于公制的FSC方法建模不确定性仍然是一个挑战。为了模拟不确定性,我们根据证据理论将分布分布在阶级概率上。结果,不确定性建模和度量学习可以被解耦。为了减少分类的不确定性,我们提出了贝叶斯证据融合定理。给定观察到的样本,网络学会获取后验分布参数给定预先训练的网络产生的先前参数。详细的梯度分析表明,我们的方法提供了一个平滑的优化目标,并可以捕获不确定性。所提出的方法对公制学习策略不可知,可以作为插件模块实施。我们将方法集成到几种最新的FSC方法中,并证明了标准FSC基准的提高准确性和不确定性量化。

Few-Shot Classification(FSC) aims to generalize from base classes to novel classes given very limited labeled samples, which is an important step on the path toward human-like machine learning. State-of-the-art solutions involve learning to find a good metric and representation space to compute the distance between samples. Despite the promising accuracy performance, how to model uncertainty for metric-based FSC methods effectively is still a challenge. To model uncertainty, We place a distribution over class probability based on the theory of evidence. As a result, uncertainty modeling and metric learning can be decoupled. To reduce the uncertainty of classification, we propose a Bayesian evidence fusion theorem. Given observed samples, the network learns to get posterior distribution parameters given the prior parameters produced by the pre-trained network. Detailed gradient analysis shows that our method provides a smooth optimization target and can capture the uncertainty. The proposed method is agnostic to metric learning strategies and can be implemented as a plug-and-play module. We integrate our method into several newest FSC methods and demonstrate the improved accuracy and uncertainty quantification on standard FSC benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源