论文标题
在存在手性拓扑缺陷的情况下扩散
Diffusion in the presence of a chiral topological defect
论文作者
论文摘要
我们研究了由手性拓扑缺陷引起的变形场的存在,研究真实标量场的扩散过程。该缺陷将通常的欧几里得背景几何形状修改为以单数扭转场为特征的非对抗Riemann-Cartan几何形状。建立了扩散方程的新形式,并通过数值研究了缺陷附近的标量场分布。结果表明对边界条件的敏感性很高。在瞬态方案中,我们发现缺陷涡度产生与扩散流相关的角动量,并讨论其主要特性。
We study the diffusion processes of a real scalar field in the presence of the distorsion field induced by a chiral topological defect. The defect modifies the usual Euclidean background geometry into a non-diagonal Riemann-Cartan geometry characterized by a singular torsion field. The new form of the diffusion equation is established and the scalar field distribution in the vicinity of the defect is investigated numerically. Results show a high sensitivity to the boundary conditions. In the transient regime, we find that the defect vorticity generates an angular momentum associated to the diffusion flow and we discuss its main properties.