论文标题

像素:快速,准确的PDE求解器的物理信息细胞表示

PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE Solvers

论文作者

Kang, Namgyu, Lee, Byeonghyeon, Hong, Youngjoon, Yun, Seok-Bae, Park, Eunbyung

论文摘要

随着计算能力的增加和机器学习的进步,基于数据驱动的学习方法在解决PDE方面引起了极大的关注。物理知识的神经网络(PINN)最近出现并成功地在各种前进和逆PDE问题中取得了成功的效果,例如灵活性,无网状解决方案和无监督的培训。但是,它们的收敛速度较慢和相对不准确的解决方案通常会限制其在许多科学和工程领域中的更广泛适用性。本文提出了一种新型的数据驱动的PDES求解器,物理知识的细胞表示(Pixel),优雅地结合了经典的数值方法和基于学习的方法。我们采用来自数值方法的网格结构,以提高准确性和收敛速度并克服PINN中呈现的光谱偏差。此外,所提出的方法在PINN中具有相同的好处,例如,使用相同的优化框架来解决前进和逆PDE问题,并很容易通过现代自动分化技术来实施PDE约束。我们为原始Pinn所努力的各种具有挑战性的PDE提供了实验结果,并表明像素可以达到快速收敛速度和高精度。项目页面:https://namgyukang.github.io/pixel/

With the increases in computational power and advances in machine learning, data-driven learning-based methods have gained significant attention in solving PDEs. Physics-informed neural networks (PINNs) have recently emerged and succeeded in various forward and inverse PDE problems thanks to their excellent properties, such as flexibility, mesh-free solutions, and unsupervised training. However, their slower convergence speed and relatively inaccurate solutions often limit their broader applicability in many science and engineering domains. This paper proposes a new kind of data-driven PDEs solver, physics-informed cell representations (PIXEL), elegantly combining classical numerical methods and learning-based approaches. We adopt a grid structure from the numerical methods to improve accuracy and convergence speed and overcome the spectral bias presented in PINNs. Moreover, the proposed method enjoys the same benefits in PINNs, e.g., using the same optimization frameworks to solve both forward and inverse PDE problems and readily enforcing PDE constraints with modern automatic differentiation techniques. We provide experimental results on various challenging PDEs that the original PINNs have struggled with and show that PIXEL achieves fast convergence speed and high accuracy. Project page: https://namgyukang.github.io/PIXEL/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源