论文标题

深度学习可以从XRF数据中自动识别分层色素吗?

Can Deep Learning Assist Automatic Identification of Layered Pigments From XRF Data?

论文作者

Bingjie, Xu, Wu, Yunan, Hao, Pengxiao, Vermeulen, Marc, McGeachy, Alicia, Smith, Kate, Eremin, Katherine, Rayner, Georgina, Verri, Giovanni, Willomitzer, Florian, Alfeld, Matthias, Tumblin, Jack, Katsaggelos, Aggelos, Walton, Marc

论文摘要

X射线荧光光谱(XRF)在广泛的科学领域,尤其是在文化遗产中,在元素分析中起重要作用。 XRF成像使用栅格扫描来跨艺术品获取光谱,为基于其元素组成的颜料分布提供了空间分析的机会。但是,常规的基于XRF的色素识别依赖于耗时的元素映射,该元素映射通过测量光谱的专家解释。为了减少对手动工作的依赖,最近的研究应用了机器学习技术,以在数据分析中聚集相似的XRF光谱并确定最可能的颜料。然而,自动色素识别策略直接处理真实绘画的复杂结构,例如色素混合物和分层色素。此外,与平均光谱相比,基于XRF成像的像素颜料识别仍然是障碍物。因此,我们开发了一个基于深度学习的端到端色素识别框架,以完全自动化色素识别过程。特别是,它对浓度较低的颜料具有高灵敏度和对颜料的敏感性,因此可以使令人满意的结果基于单像素XRF光谱映射颜料。作为案例研究,我们将框架应用于实验室准备的模型绘画和两幅19世纪的绘画:Paul Gauguin的PoèmesBarbares(1896),其中包含带有底层绘画的分层颜料,以及Paul Cezanne的沐浴者(1899-1904)。色素鉴定结果表明,我们的模型通过元素映射获得了与分析的可比结果,这表明我们的模型的普遍性和稳定性。

X-ray fluorescence spectroscopy (XRF) plays an important role for elemental analysis in a wide range of scientific fields, especially in cultural heritage. XRF imaging, which uses a raster scan to acquire spectra across artworks, provides the opportunity for spatial analysis of pigment distributions based on their elemental composition. However, conventional XRF-based pigment identification relies on time-consuming elemental mapping by expert interpretations of measured spectra. To reduce the reliance on manual work, recent studies have applied machine learning techniques to cluster similar XRF spectra in data analysis and to identify the most likely pigments. Nevertheless, it is still challenging for automatic pigment identification strategies to directly tackle the complex structure of real paintings, e.g. pigment mixtures and layered pigments. In addition, pixel-wise pigment identification based on XRF imaging remains an obstacle due to the high noise level compared with averaged spectra. Therefore, we developed a deep-learning-based end-to-end pigment identification framework to fully automate the pigment identification process. In particular, it offers high sensitivity to the underlying pigments and to the pigments with a low concentration, therefore enabling satisfying results in mapping the pigments based on single-pixel XRF spectrum. As case studies, we applied our framework to lab-prepared mock-up paintings and two 19th-century paintings: Paul Gauguin's Poèmes Barbares (1896) that contains layered pigments with an underlying painting, and Paul Cezanne's The Bathers (1899-1904). The pigment identification results demonstrated that our model achieved comparable results to the analysis by elemental mapping, suggesting the generalizability and stability of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源