论文标题

循环amplituhedron的内边界

Internal boundaries of the loop amplituhedron

论文作者

Dian, Gabriele, Heslop, Paul, Stewart, Alastair

论文摘要

正面几何形状的严格定义意味着其规范形式的所有最大残基均为$ \ pm 1 $。但是,我们观察到,平面$ \ MATHCAL {n} = 4 $ SUPER YANG-MILLS中的振幅的循环集成具有最大残基不等于$ \ pm 1 $。我们发现这样做的原因是,在循环扩展的边界结构中,有几何形状包含内部边界:编纂的一个缺陷将两个相反方向的区域分开。这种现象需要对积极几何形状和规范形式的概念进行概括,以包括这种内部边界,还表明了对“加权阳性几何形状”的进一步概括的实用性。我们对$ \ Mathcal {n} = 4 $振幅的最深切割重新检查,并获得新的所有订单残留物。

The strict definition of positive geometry implies that all maximal residues of its canonical form are $\pm 1$. We observe, however, that the loop integrand of the amplitude in planar $\mathcal{N}=4$ super Yang-Mills has maximal residues not equal to $\pm 1$. We find the reason for this is that deep in the boundary structure of the loop amplituhedron there are geometries which contain internal boundaries: codimension one defects separating two regions of opposite orientation. This phenomenon requires a generalisation of the concept of positive geometry and canonical form to include such internal boundaries and also suggests the utility of a further generalisation to `weighted positive geometries'. We re-examine the deepest cut of $\mathcal{N}=4$ amplitudes in light of this and obtain new all order residues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源