论文标题

具有单数初始条件的分数汉堡方程

Fractional Burgers equation with singular initial condition

论文作者

Jakubowski, Tomasz, Serafin, Grzegorz

论文摘要

我们考虑$ {\ Mathbf r}^d $,$ nabla(U | U | u |^{(α-1)/β})$的分数钻头方程$Δ^{α/2} u + b \ cdot \ nabla(u | u | u | u |^{(α-1)/β})$初始条件,其中包含不属于任何$ l^p({\ mathbf r}^d)$的功能,$ 1 \ leq p \ leq \ leq \ infty $。接下来,我们将一般结果应用于初始条件$ u_0(x)= m | x |^{ - β} $,$ 1 <β<d $,并显示出自相似溶液的存在,并得出其特性,例如平滑度,双向估计,渐近估计和梯度估计。

We consider the fractional Burgers equation $ Δ^{α/2} u + b\cdot \nabla (u|u|^{(α-1)/β})$ on ${\mathbf R}^d$, $d\geq2$, with {$α\in (1,2)$ and} $β>1$ and prove the existence of a solution for a large class of initial conditions, which contains functions that do not belong to any $L^p({\mathbf R}^d)$, $1\leq p\leq\infty$. Next, we apply the general results to the initial condition $u_0(x)=M|x|^{-β}$, $1<β<d$, and show the existence of a selfsimilar solution and derive its properties such as smoothness, two-sided estimates, asymptotics and gradient estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源