论文标题
具有单数初始条件的分数汉堡方程
Fractional Burgers equation with singular initial condition
论文作者
论文摘要
我们考虑$ {\ Mathbf r}^d $,$ nabla(U | U | u |^{(α-1)/β})$的分数钻头方程$Δ^{α/2} u + b \ cdot \ nabla(u | u | u | u |^{(α-1)/β})$初始条件,其中包含不属于任何$ l^p({\ mathbf r}^d)$的功能,$ 1 \ leq p \ leq \ leq \ infty $。接下来,我们将一般结果应用于初始条件$ u_0(x)= m | x |^{ - β} $,$ 1 <β<d $,并显示出自相似溶液的存在,并得出其特性,例如平滑度,双向估计,渐近估计和梯度估计。
We consider the fractional Burgers equation $ Δ^{α/2} u + b\cdot \nabla (u|u|^{(α-1)/β})$ on ${\mathbf R}^d$, $d\geq2$, with {$α\in (1,2)$ and} $β>1$ and prove the existence of a solution for a large class of initial conditions, which contains functions that do not belong to any $L^p({\mathbf R}^d)$, $1\leq p\leq\infty$. Next, we apply the general results to the initial condition $u_0(x)=M|x|^{-β}$, $1<β<d$, and show the existence of a selfsimilar solution and derive its properties such as smoothness, two-sided estimates, asymptotics and gradient estimates.