论文标题

实时混合物的边缘感知自动编码器设计图像压缩

Edge-Aware Autoencoder Design for Real-Time Mixture-of-Experts Image Compression

论文作者

Fleig, Elvira, Geistert, Jonas, Bochinski, Erik, Jongebloed, Rolf, Sikora, Thomas

论文摘要

转向混合式的Experts(SMOE)模型提供了稀疏的,边缘感知的表示,适用于图像处理中的许多用例。这包括2D和更高维像素数据的降解,超分辨率和压缩。最近的图像压缩作品表明,基于SMOE模型的图像的压缩可以为最新的制作提供竞争性能。不幸的是,编码器的迭代模型构建过程带有过度的计算需求。在本文中,我们介绍了一种新颖的边缘自动编码器(AE)策略,旨在避免SMOE模型的时必时间迭代优化。这是通过直接映射像素块来模拟压缩参数来完成的,在类似于算法“展开”的最新作品的精神中,同时保持了与已建立的SMOE框架的完全兼容性。借助我们的插入式AE编码器,我们在编码器运行时节省的量子上达到了500至1000倍的量子性能,甚至具有改进的图像重建质量。对于图像压缩,插件AE编码器具有实时属性,并且与我们以前的作品相比,插件的性能改善了RD绩效。

Steered-Mixtures-of-Experts (SMoE) models provide sparse, edge-aware representations, applicable to many use-cases in image processing. This includes denoising, super-resolution and compression of 2D- and higher dimensional pixel data. Recent works for image compression indicate that compression of images based on SMoE models can provide competitive performance to the state-of-the-art. Unfortunately, the iterative model-building process at the encoder comes with excessive computational demands. In this paper we introduce a novel edge-aware Autoencoder (AE) strategy designed to avoid the time-consuming iterative optimization of SMoE models. This is done by directly mapping pixel blocks to model parameters for compression, in spirit similar to recent works on "unfolding" of algorithms, while maintaining full compatibility to the established SMoE framework. With our plug-in AE encoder, we achieve a quantum-leap in performance with encoder run-time savings by a factor of 500 to 1000 with even improved image reconstruction quality. For image compression the plug-in AE encoder has real-time properties and improves RD-performance compared to our previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源