论文标题
建模爆发相互作用作为闪光效应的潜在机制
Modeling interspur interactions as a potential mechanism of the FLASH effect
论文作者
论文摘要
与常规剂量率(CDR)辐射相比,导致闪光效应的机制,通过超高剂量率(UHDR)辐射进行的正常组织持续辐射,尚不确定。在这里,我们研究了跨性别相互作用(单个颗粒轨迹的放射性物种之间的相互作用)对整体放射化学相互作用的贡献,这是辐射参数的函数,并表明将间隙相互作用增加作为闪光辐射治疗中组织抛光的潜在机制。我们构建了一个模型,该模型代表目标体积中马刺的时空分布,这是辐射参数的函数(例如剂量,剂量速率,线性能量传递),并量化了跨度相互作用对正在进行的放射化学的影响。马刺在基于蒙特卡洛模拟的参数下在简化的反应扩散方程下进化,并通过计算目标中跨度重叠的预期值来量化跨度相互作用。 该模型表明,对于任何一组辐照参数,最小临界剂量和剂量速率对于诱导显着的施加相互作用是必要的,并且跨度相互作用与固定剂量下的束线性能量转移呈负相关。该模型提出了最佳光束参数,包括剂量,剂量速率,线性能量转移和脉冲结构,以最大程度地提高间隙相互作用。根据限制跨越互动的目标的自由基清除率,该模型预测引起闪光效应所需的辐射参数可能与显着的施加插入相互作用的发生相吻合,这表明跨度相互作用可能是闪光效应的基本机制。
The mechanism responsible for the FLASH effect, normal tissue sparing by ultra-high dose rate (UHDR) irradiation with isoeffective tumor control compared to conventional dose rate (CDR) irradiation, remains undetermined. Here we investigate the contribution of interspur interactions (interactions between radiolytic species of individual particle tracks) to overall radiochemical interactions as a function of irradiation parameters, and suggest an increase in interspur interaction as a potential mechanism for tissue sparing in FLASH radiation therapy. We construct a model that analytically represents the spatiotemporal distribution of spurs in a target volume as a function of irradiation parameters (e.g. dose, dose rate, linear energy transfer), and quantifies the effect of interspur interactions on the ongoing radiochemistry. Spurs evolve under a simplified reaction-diffusion equation with parameters based on Monte Carlo simulations, and interspur interaction is quantified by calculating the expected values of interspur overlap in the target. The model demonstrates that for any set of irradiation parameters, a minimum critical dose and dose rate are necessary to induce significant interspur interaction, and that interspur interactions correlate negatively with beam linear energy transfer at a fixed dose. The model suggests optimal beam parameters, including dose, dose rate, linear energy transfer, and pulse structure, to maximize interspur interactions. Depending on the rate of radical scavenging in the target, which limits interspur interaction, this model predicts that the irradiation parameters necessary to elicit the FLASH effect may coincide with an onset of significant interspur interactions, suggesting that interspur interaction may be the underlying mechanism of the FLASH effect.