论文标题

通过拆分分解的图形类规模限制

Scaling limit of graph classes through split decomposition

论文作者

Bassino, Frédérique, Bouvel, Mathilde, Féray, Valentin, Gerin, Lucas, Pierrot, Adeline

论文摘要

我们证明,相对于Gromov-Prokhorov拓扑,Aldous'Brownian CRT是缩放限制的限制,在以下三个图形家族中,均匀的随机图:距离式式图形,$ 2 $连接的距离距离远距离式图形和$ 3 $ -LEAF POWER图。我们的方法基于分解分解和分析组合学。

We prove that Aldous' Brownian CRT is the scaling limit, with respect to the Gromov--Prokhorov topology, of uniform random graphs in each of the three following families of graphs: distance-hereditary graphs, $2$-connected distance-hereditary graphs and $3$-leaf power graphs. Our approach is based on the split decomposition and on analytic combinatorics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源