论文标题
简短证明可行性的可行性$ 3 $ manifolds的注释
A note on a short proof of the parallelizability of orientable $3$-manifolds
论文作者
论文摘要
我们调查,完成和修改涉及打结理论的证据,表明所有可取向$ 3 $ manifolds都是可行的。证明的完成是通过使用具有非平凡边界的歧管和正常束之间的关系以及稳定的可行和可行的可行流形完成的。我们以$ 7 $ -Manifolds的意见和现在的J.Korbaš的示例结尾,这是不可行的$ 7 $ Manifold的示例。
We survey, complete, and modify a proof, involving knot theory, of Stiefel's theorem that all orientable $3$-manifolds are parallelizable. The completion of the proof is done by using the relationship between the tangent bundle and normal bundle of manifolds with non-trivial boundary and on stably parallelizable and parallelizable manifolds. We end with a remark on $7$-manifolds and present J. Korbaš' example of a non-parallelizable $7$-manifold.