论文标题

Riemannian几何方法用于最小化失真及其应用

Riemannian Geometry Approach for Minimizing Distortion and its Applications

论文作者

Ozeri, Dror

论文摘要

给定仿射转换$ t $,我们定义其Fisher扭曲$ dist_f(t)$。我们表明,Fisher失真具有Riemannian公制结构,并提供了一种算法,用于寻找平均扭曲变换(即 - 对于给定的$ \ {t_ {i} \} _ {i = 1}^n $ affine Transformations的$ \ {t_ {i} \} _ {i = 1}^n $ $ \ sum_ {i = 1}^ndist_f^{2}(t^{ - 1} t_ {i})。$平均变形转换在某些字段中可能很有用 - 特别是,我们将其应用于呈现仿期全景。

Given an affine transformation $T$, we define its Fisher distortion $Dist_F(T)$. We show that the Fisher distortion has Riemannian metric structure and provide an algorithm for finding mean distorting transformation -- namely -- for a given set $\{T_{i}\}_{i=1}^N$ of affine transformations, find an affine transformation $T$ that minimize the overall distortion $\sum_{i=1}^NDist_F^{2}(T^{-1}T_{i}).$ The mean distorting transformation can be useful in some fields -- in particular, we apply it for rendering affine panoramas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源