论文标题

互动推荐的对比度学习

Contrastive Learning for Interactive Recommendation in Fashion

论文作者

Sevegnani, Karin, Seshadri, Arjun, Wang, Tian, Beniwal, Anurag, McAuley, Julian, Lu, Alan, Medioni, Gerard

论文摘要

推荐系统和搜索都是在促进个性化和在线时尚平台中浏览的便利性上必不可少的。但是,这两个工具通常是独立运行的,未能结合推荐系统的优势,无法将用户口味与搜索系统处理用户查询的能力进行精确捕获。我们通过根据用户提供的文本请求自动推荐个性化的时尚项目来为这个问题提出一种新颖的补救措施。我们提出的模型Whisperlite使用对比度学习来从自然语言文本中捕获用户意图,并提高了时尚产品的建议质量。 Whisperlite将夹具嵌入的强度与其他用于个性化的神经网络层相结合,并使用基于二进制交叉熵和对比度损失的复合损失函数进行了训练。该模型在从在线零售时尚商店收集的现实世界数据集上进行测试,以及在不同电子商务领域(例如餐厅,电影和电视节目,服装和鞋子评论)中进行了广泛使用的开源数据集,并在离线建议检索指标上取得了重大改进。我们还进行了一项用户研究,该研究捕获了对模型推荐项目相关性的用户判断,从而确认了在在线环境中Whisperlite建议的相关性。

Recommender systems and search are both indispensable in facilitating personalization and ease of browsing in online fashion platforms. However, the two tools often operate independently, failing to combine the strengths of recommender systems to accurately capture user tastes with search systems' ability to process user queries. We propose a novel remedy to this problem by automatically recommending personalized fashion items based on a user-provided text request. Our proposed model, WhisperLite, uses contrastive learning to capture user intent from natural language text and improves the recommendation quality of fashion products. WhisperLite combines the strength of CLIP embeddings with additional neural network layers for personalization, and is trained using a composite loss function based on binary cross entropy and contrastive loss. The model demonstrates a significant improvement in offline recommendation retrieval metrics when tested on a real-world dataset collected from an online retail fashion store, as well as widely used open-source datasets in different e-commerce domains, such as restaurants, movies and TV shows, clothing and shoe reviews. We additionally conduct a user study that captures user judgements on the relevance of the model's recommended items, confirming the relevancy of WhisperLite's recommendations in an online setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源