论文标题
在减轻硬簇以进行面部聚类
On Mitigating Hard Clusters for Face Clustering
论文作者
论文摘要
面部聚类是使用大型未标记的面部图像扩展面部识别系统的一种有希望的方法。识别我们称之为硬群的小或稀疏的面部图像簇仍然具有挑战性,这是由簇的异质性,\ ie,大小和稀疏性的高变化引起的。因此,使用均匀阈值(识别簇)的常规方式通常会导致对应该属于硬群的样品的可怕分类。我们通过利用样品的邻居信息并以概率方式推断(样本的)群集成员来解决这个问题。我们介绍了两个新型模块,分别是基于邻域扩散的密度(NDDE)和基于过渡概率的距离(TPDI),我们可以简单地将标准密度峰值聚类算法应用于均匀的阈值。我们对多个基准测试的实验表明,每个模块都会有助于我们方法的最终性能,并通过将它们纳入其他高级面部聚类方法中,这两个模块可以将这些方法的性能提高到新的最新式武器。代码可在以下网址获得:https://github.com/echoanran/on-mitigating-hard-clusters。
Face clustering is a promising way to scale up face recognition systems using large-scale unlabeled face images. It remains challenging to identify small or sparse face image clusters that we call hard clusters, which is caused by the heterogeneity, \ie, high variations in size and sparsity, of the clusters. Consequently, the conventional way of using a uniform threshold (to identify clusters) often leads to a terrible misclassification for the samples that should belong to hard clusters. We tackle this problem by leveraging the neighborhood information of samples and inferring the cluster memberships (of samples) in a probabilistic way. We introduce two novel modules, Neighborhood-Diffusion-based Density (NDDe) and Transition-Probability-based Distance (TPDi), based on which we can simply apply the standard Density Peak Clustering algorithm with a uniform threshold. Our experiments on multiple benchmarks show that each module contributes to the final performance of our method, and by incorporating them into other advanced face clustering methods, these two modules can boost the performance of these methods to a new state-of-the-art. Code is available at: https://github.com/echoanran/On-Mitigating-Hard-Clusters.