论文标题
沿Piatetski-shapiro数字的Möbiusthue-morse序列的正交性
Möbius orthogonality of Thue-Morse sequence along Piatetski-Shapiro numbers
论文作者
论文摘要
我们表明,Möbius函数与沿PIATETSKI-SHAPIRO数字$ \ lfloor n^c \ rfloor $的thue-morse序列$ t(n)$正通,对于任何$ 1 <c <2 $。以前,该属性是针对正方形$ t(n^2)$的子序列建立的。这些都是具有最大熵的Möbius正交序列的例子。
We show that the Möbius function is orthogonal to the Thue-Morse sequence $t(n)$ taken along the Piatetski-Shapiro numbers $\lfloor n^c \rfloor$ for any $1 < c < 2$. Previously this property was established for the subsequence along the squares $t(n^2)$. These are both examples of Möbius orthogonal sequences with maximum entropy.