论文标题

新的添加剂启动器通过不可分割的障碍物产品下限

New Additive Spanner Lower Bounds by an Unlayered Obstacle Product

论文作者

Bodwin, Greg, Hoppenworth, Gary

论文摘要

对于输入图$ g $,添加剂跨度是一个稀疏的子图$ h $,其最短路径与$ g $的路径匹配到小添加性错误。我们证明了添加剂跨度区域中的两个新的下限: 1)我们构建了$ n $ node图$ g $,其中任何跨度$ o(n)$边缘必须将成对距离增加到$+ω(n^{1/7})$。这在最近的$+ω(N^{1/10.5})$的最新下限上改善了Lu,Wein,Vassilevska Williams和Xu [Soda '22]。 2)Coppersmith和Elkin [Soda '05]的经典结果证明,对于任何$ n $ node Graph $ g $和一组$ p = o(n^{1/2})$需求对,一个人可以在$ O(n)$ edges上使用apanner的需求对中的所有成对距离。他们还提供了下限的结构,并确定该范围$ p = o(n^{1/2})$无法改善。我们通过证明,对于任何恒定的$ k $,即使允许扳手在需求对中$+k $添加性误差,也是不可解决的,从而加强了这种下限。这对Coppersmith和Elkin [Soda '05]提出了一个否定的问题,以及Cygan,Grandoni和Kavitha [Stacs '13],Abboud和Bodwin [Soda '16]。 在技​​术层面上,我们的下限是通过改进用于将“内部”和“外部”图组成的整个障碍物产品框架中获得的。特别是,我们制定了一种新的分析策略,该策略允许在产品中使用某些非上层图,并使用这种自由来设计带来新的下限的更好的内部和外部图。

For an input graph $G$, an additive spanner is a sparse subgraph $H$ whose shortest paths match those of $G$ up to small additive error. We prove two new lower bounds in the area of additive spanners: 1) We construct $n$-node graphs $G$ for which any spanner on $O(n)$ edges must increase a pairwise distance by $+Ω(n^{1/7})$. This improves on a recent lower bound of $+Ω(n^{1/10.5})$ by Lu, Wein, Vassilevska Williams, and Xu [SODA '22]. 2) A classic result by Coppersmith and Elkin [SODA '05] proves that for any $n$-node graph $G$ and set of $p = O(n^{1/2})$ demand pairs, one can exactly preserve all pairwise distances among demand pairs using a spanner on $O(n)$ edges. They also provided a lower bound construction, establishing that that this range $p = O(n^{1/2})$ cannot be improved. We strengthen this lower bound by proving that, for any constant $k$, this range of $p$ is still unimprovable even if the spanner is allowed $+k$ additive error among the demand pairs. This negatively resolves an open question asked by Coppersmith and Elkin [SODA '05] and again by Cygan, Grandoni, and Kavitha [STACS '13] and Abboud and Bodwin [SODA '16]. At a technical level, our lower bounds are obtained by an improvement to the entire obstacle product framework used to compose "inner" and "outer" graphs into lower bound instances. In particular, we develop a new strategy for analysis that allows certain non-layered graphs to be used in the product, and we use this freedom to design better inner and outer graphs that lead to our new lower bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源