论文标题
大规模深度学习多重生事件分类
Large-Scale Deep Learning for Multi-Jet Event Classification
论文作者
论文摘要
我们通过高性能计算(HPC)报告了最大的量表深度学习,以通过13 TEV的Proton-Proton碰撞中的CMS仿真数据进行物理分析。我们构建了一个卷积神经网络(CNN)模型,该模型将低级信息作为图像作为图像,考虑CMS探测器的几何形状,并使用此模型来区分\ textIt {r} - 违反超级对称性(RPV SUSY)事件,这些事件来自带有弹性量子事件的标准模型(QCD多人JET)的背景事件。我们将CNN方法的分类性能与广泛使用的基于切割的方法的分类性能进行了比较。 CNN方法的信号效率(和预期意义)是基于剪切方法的信号效率(1.2)倍。为了加快培训,模型培训是使用韩国科学技术信息研究所的NURIN HPC系统进行的,该信息配备了数千个并行\ Texttt {Xeon Phi} CPU。值得注意的是,我们的CNN模型显示可扩展性高达1024个节点。
We report the largest scale deep learning with High Performance Computing (HPC) to physics analysis with the CMS simulation data in proton-proton collisions at 13 TeV. We build a Convolutional Neural Network (CNN) model that takes low-level information as images considering the geometry of the CMS detector and use this model to discriminate \textit{R}-parity violating super symmetry (RPV SUSY) events from the background events with inelastic quantum process from the Standard Model (QCD multi-jet). We compare the classification performance of the CNN method with that of the widely used cut-based method. The signal efficiency (and expected significance) of the CNN method is 1.85 (1.2) times higher than that of the cut-based method. To speed-up the training, the model training is conducted using the Nurion HPC system at the Korea Institute of Science and Technology Information, which is equipped with thousands of parallel \texttt{Xeon Phi} CPUs. Notably, our CNN model shows scalability up to 1024 nodes.