论文标题
可靠的摊销变异推断,基于物理的潜在分布校正
Reliable amortized variational inference with physics-based latent distribution correction
论文作者
论文摘要
贝叶斯对高维反问题的推断在计算上是昂贵的,需要选择合适的先验分布。摊销的变异推理通过神经网络解决了这些挑战,该神经网络不仅在一个数据实例中近似后验分布,而且是与特定反问题有关的数据分布。在推断期间,神经网络(在我们的情况下,有条件地归一流的流程)几乎没有成本提供后验样本。但是,摊销变异推断的准确性取决于高保真训练数据的可用性,由于地球异质性,由于地球物理反问题很少存在。此外,如果对分布式数据进行评估,则该网络很容易出现错误。因此,我们建议在存在中等数据分布变化的情况下提高摊销变异推断的弹性。我们通过对潜在分布的校正来实现这一目标,该分布改善了手头数据的后验分布近似。该校正涉及放松对潜在分布的标准高斯假设,并通过具有未知平均值和(对角线)协方差的高斯分布来对其进行参数化。然后,通过最大程度地减少校正后和(基于物理)的真实后验分布之间的kullback-leibler差异来估算这些未知数。尽管通过线性化的地震成像示例,虽然通用且适用于其他反问题,但我们表明,我们的校正步骤可提高摊销变异推断的鲁棒性,以了解地震源的数量,噪声差异,噪声方差和先前分布的变化。这种方法提供了伪像有限的地震图像,并且对其不确定性的评估大致与五个反度迁移的成本大致相同。
Bayesian inference for high-dimensional inverse problems is computationally costly and requires selecting a suitable prior distribution. Amortized variational inference addresses these challenges via a neural network that approximates the posterior distribution not only for one instance of data, but a distribution of data pertaining to a specific inverse problem. During inference, the neural network -- in our case a conditional normalizing flow -- provides posterior samples at virtually no cost. However, the accuracy of amortized variational inference relies on the availability of high-fidelity training data, which seldom exists in geophysical inverse problems due to the Earth's heterogeneity. In addition, the network is prone to errors if evaluated over out-of-distribution data. As such, we propose to increase the resilience of amortized variational inference in the presence of moderate data distribution shifts. We achieve this via a correction to the latent distribution that improves the posterior distribution approximation for the data at hand. The correction involves relaxing the standard Gaussian assumption on the latent distribution and parameterizing it via a Gaussian distribution with an unknown mean and (diagonal) covariance. These unknowns are then estimated by minimizing the Kullback-Leibler divergence between the corrected and the (physics-based) true posterior distributions. While generic and applicable to other inverse problems, by means of a linearized seismic imaging example, we show that our correction step improves the robustness of amortized variational inference with respect to changes in the number of seismic sources, noise variance, and shifts in the prior distribution. This approach provides a seismic image with limited artifacts and an assessment of its uncertainty at approximately the same cost as five reverse-time migrations.