论文标题

可扩展的贝叶斯说服框架,用于在异质网络上进行流行遏制

A Scalable Bayesian Persuasion Framework for Epidemic Containment on Heterogeneous Networks

论文作者

Pathak, Shraddha, Kulkarni, Ankur A.

论文摘要

在流行病中,社会中的个人可用的信息深深影响着他们对流行病的信仰,因此,他们采取的预防措施以保护感染。在本文中,我们开发了一个可扩展的框架,以确定政府必须向网络社会中的个人进行的最佳信息披露,以实现流行病的目的。信息设计问题的问题因社会的异质性,个人所面临的积极外部性以及公众对这种披露的反应而变得复杂。我们使用网络公共物品模型来捕获潜在的社会结构。我们的第一个主要结果是将政府目标的结构分解为两个独立组成部分 - 一个依赖于个人效力的组件,而另一个依赖于基础网络的属性。由于该分解中的网络依赖性术语不受政府发送的信号的影响,因此此特征简化了找到最佳信息披露政策的问题。我们发现明确的条件,从风险避免和审慎的角度来看,在此条件下,没有披露,全面披露,夸张和淡化是最佳政策。结构分解结果也有助于研究其他形式的干预措施,例如激励设计和网络设计。

During an epidemic, the information available to individuals in the society deeply influences their belief of the epidemic spread, and consequently the preventive measures they take to stay safe from the infection. In this paper, we develop a scalable framework for ascertaining the optimal information disclosure a government must make to individuals in a networked society for the purpose of epidemic containment. This problem of information design problem is complicated by the heterogeneous nature of the society, the positive externalities faced by individuals, and the variety in the public response to such disclosures. We use a networked public goods model to capture the underlying societal structure. Our first main result is a structural decomposition of the government's objectives into two independent components -- a component dependent on the utility function of individuals, and another dependent on properties of the underlying network. Since the network dependent term in this decomposition is unaffected by the signals sent by the government, this characterization simplifies the problem of finding the optimal information disclosure policies. We find explicit conditions, in terms of the risk aversion and prudence, under which no disclosure, full disclosure, exaggeration and downplay are the optimal policies. The structural decomposition results are also helpful in studying other forms of interventions like incentive design and network design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源