论文标题
RGB-D机器人臂的RGB-D机器人姿势估计
RGB-D Robotic Pose Estimation For a Servicing Robotic Arm
论文作者
论文摘要
预测,预测了大量的机器人和人为协助的任务。 NASA为了解这些天体的地质和构成的努力在很大程度上取决于机器人臂的使用。当人类与机器人探险家一起工作时,安全性和冗余方面至关重要。此外,机器人臂对于卫星维修和计划的轨道碎片缓解任务至关重要。这项工作的目的是创建一个基于定制的计算机视觉(CV)的人工神经网络(ANN),该神经网络(ANN)能够从单个(RGB -D)图像中迅速识别7度自由(DOF)机器人臂的姿势 - 就像人类可以轻松地识别出手臂是否指向某个通用方向。 Sawyer机器人臂用于开发和训练这种智能算法。由于Sawyer的关节空间涵盖了7个维度,因此覆盖整个联合配置空间是一项无法克服的任务。在这项工作中,使用类似于Taguchi方法的正交阵列,以有效地跨越关节空间,而训练图像的数量最少。此生成的数据库用于训练自定义ANN,其准确度平均等于数据库生成使用的最小关节位移步骤的两倍。预先训练的ANN将有助于估计在太空站,航天器和流浪者作为辅助工具或应急计划上使用的机器人操纵器的姿势。
A large number of robotic and human-assisted missions to the Moon and Mars are forecast. NASA's efforts to learn about the geology and makeup of these celestial bodies rely heavily on the use of robotic arms. The safety and redundancy aspects will be crucial when humans will be working alongside the robotic explorers. Additionally, robotic arms are crucial to satellite servicing and planned orbit debris mitigation missions. The goal of this work is to create a custom Computer Vision (CV) based Artificial Neural Network (ANN) that would be able to rapidly identify the posture of a 7 Degree of Freedom (DoF) robotic arm from a single (RGB-D) image - just like humans can easily identify if an arm is pointing in some general direction. The Sawyer robotic arm is used for developing and training this intelligent algorithm. Since Sawyer's joint space spans 7 dimensions, it is an insurmountable task to cover the entire joint configuration space. In this work, orthogonal arrays are used, similar to the Taguchi method, to efficiently span the joint space with the minimal number of training images. This ``optimally'' generated database is used to train the custom ANN and its degree of accuracy is on average equal to twice the smallest joint displacement step used for database generation. A pre-trained ANN will be useful for estimating the postures of robotic manipulators used on space stations, spacecraft, and rovers as an auxiliary tool or for contingency plans.