论文标题

在10厘米纳米粒子辅助混合韦克菲尔德加速器中高电平10 GEV电子加速器

High-charge 10 GeV electron acceleration in a 10 cm nanoparticle-assisted hybrid wakefield accelerator

论文作者

Aniculaesei, Constantin, Ha, Thanh, Yoffe, Samuel, McCary, Edward, Spinks, Michael M, Quevedo, Hernan J., Labun, Lance, Labun, Ou Z., Sain, Ritwik, Hannasch, Andrea, Zgadzaj, Rafal, Pagano, Isabella, Franco-Altamirano, Jose A., Ringuette, Martin L., Gaul, Erhart, Luedtke, Scott V., Tiwari, Ganesh, Ersfeld, Bernhard, Brunetti, Enrico, Ruhl, Hartmut, Ditmire, Todd, Bruce, Sandra, Donovan, Michael E., Jaroszynski, Dino A., Downer, Michael C., Hegelich, Bjorn Manuel

论文摘要

在电子Wakefield加速器中,激光脉冲或带电的粒子束激发了血浆波。在适当的条件下,背景血浆中的电子被困在等离子体波中,并加速至超偏见的速度。我们介绍了原理证明的韦克场加速度实验的最新结果,该实验揭示了激光驱动和粒子驱动的加速器之间的独特协同作用:高电荷激光器 - 沃克赛场加速的电子束可以驱动自己的韦克菲尔德,而同时通过指示激光脉冲通过指示激光脉冲从激光脉冲中吸引能量。这个过程继续加速电子韦克菲尔德通常减速阶段的电子,从而达到了更高的能量。我们发现,10厘米长的纳米粒子辅助的韦克菲尔德加速器可以生成340 pc,10.4+-0.6 GEV电子束,3.4 GEV RMS旋转能量扩散和0.9 mrad rms rms发散。它还可以产生能量较低的束,能量传播的百分之几和较高的电荷。这种协同机制和实验设置的简单性代表了一个距离紧凑的桌面粒子加速器的一步,适用于需要在高能量下高电荷的应用,例如游离电子激光器或产生哑光束的辐射源。

In an electron wakefield accelerator, an intense laser pulse or charged particle beam excites plasma waves. Under proper conditions, electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities. We present recent results from a proof-of-principle wakefield acceleration experiment that reveal a unique synergy between a laser-driven and particle-driven accelerator: a high-charge laser-wakefield accelerated electron bunch can drive its own wakefield while simultaneously drawing energy from the laser pulse via direct laser acceleration. This process continues to accelerate electrons beyond the usual decelerating phase of the wakefield, thus reaching much higher energies. We find that the 10-centimeter-long nanoparticle-assisted wakefield accelerator can generate 340 pC, 10.4+-0.6 GeV electron bunches with 3.4 GeV RMS convolved energy spread and 0.9 mrad RMS divergence. It can also produce bunches with lower energy, a few percent energy spread, and a higher charge. This synergistic mechanism and the simplicity of the experimental setup represent a step closer to compact tabletop particle accelerators suitable for applications requiring high charge at high energies, such as free electron lasers or radiation sources producing muon beams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源