论文标题
使用图神经网络中的电力系统中的分布式非线性状态估计
Distributed Nonlinear State Estimation in Electric Power Systems using Graph Neural Networks
论文作者
论文摘要
非线性状态估计(SE)的目的是根据电力系统中所有可用的测量值估算复杂的总线电压,通常使用迭代的高斯 - 纽顿方法来解决。在考虑来自相量测量单元以及监督控制和数据采集系统的输入时,非线性SE会带来一些困难。这些包括数值不稳定性,收敛时间取决于迭代方法的起点以及单个迭代在状态变量数量上的二次计算复杂性。本文在非线性功率系统SE的增强因子图上介绍了原始图形神经网络的实现,能够在分支机构和总线上进行测量,以及相法和遗产测量。提出的回归模型在一旦训练的推理时间内具有线性计算复杂性,并且有可能实现分布式。由于该方法是非词语且基于非矩阵的,因此它对高斯求解器容易出现的问题具有弹性。除了测试集的预测准确性外,提出的模型在模拟网络攻击和由于沟通不规则引起的不可观察的情况时表现出了鲁棒性。在这种情况下,预测错误是在本地持续的,对电力系统的其余结果没有影响。
Nonlinear state estimation (SE), with the goal of estimating complex bus voltages based on all types of measurements available in the power system, is usually solved using the iterative Gauss-Newton method. The nonlinear SE presents some difficulties when considering inputs from both phasor measurement units and supervisory control and data acquisition system. These include numerical instabilities, convergence time depending on the starting point of the iterative method, and the quadratic computational complexity of a single iteration regarding the number of state variables. This paper introduces an original graph neural network based SE implementation over the augmented factor graph of the nonlinear power system SE, capable of incorporating measurements on both branches and buses, as well as both phasor and legacy measurements. The proposed regression model has linear computational complexity during the inference time once trained, with a possibility of distributed implementation. Since the method is noniterative and non-matrix-based, it is resilient to the problems that the Gauss-Newton solver is prone to. Aside from prediction accuracy on the test set, the proposed model demonstrates robustness when simulating cyber attacks and unobservable scenarios due to communication irregularities. In those cases, prediction errors are sustained locally, with no effect on the rest of the power system's results.