论文标题

边缘贝叶斯统计数据使用掩盖自回归流量和内核密度估计器,其中包括宇宙学的示例

Marginal Bayesian Statistics Using Masked Autoregressive Flows and Kernel Density Estimators with Examples in Cosmology

论文作者

Bevins, Harry, Handley, Will, Lemos, Pablo, Sims, Peter, Acedo, Eloy de Lera, Fialkov, Anastasia

论文摘要

宇宙学实验通常采用贝叶斯工作流来从其数据中获得对宇宙学和天体物理参数的限制。已经表明,这些约束可以在不同的探针(例如普朗克和黑暗能源调查)中组合,这可能是提高我们对宇宙的理解并量化多个实验之间的张力的宝贵练习。但是,这些实验通常会受到不同的系统学,仪器效应和污染信号的困扰,我们将其共同称为“滋扰”组件,这些组件必须与目标信号一起进行建模。这会导致高维参数空间,尤其是在组合数据集时,其中只有20个维度,其中仅5个对应于关键物理量。我们提出了一种通过产生快速,可重复使用和可靠的边缘概率密度估计器来结合不同数据集中约束的方法,从而使我们获得了无刺激的可能性。通过嵌套采样的独特组合可以使我们获得贝叶斯证据,以及边缘贝叶斯统计码人造黄油,这是可能的。我们的方法在信号参数中是无损的,导致与从所有滋扰参数上运行的完整嵌套采样相同的后验分布,并且通常比评估完整的可能性更快。我们通过将其应用于黑暗能源调查和普朗克的后代组合来证明我们的方法。

Cosmological experiments often employ Bayesian workflows to derive constraints on cosmological and astrophysical parameters from their data. It has been shown that these constraints can be combined across different probes such as Planck and the Dark Energy Survey and that this can be a valuable exercise to improve our understanding of the universe and quantify tension between multiple experiments. However, these experiments are typically plagued by differing systematics, instrumental effects and contaminating signals, which we collectively refer to as `nuisance' components, that have to be modelled alongside target signals of interest. This leads to high dimensional parameter spaces, especially when combining data sets, with > 20 dimensions of which only around 5 correspond to key physical quantities. We present a means by which to combine constraints from different data sets in a computationally efficient manner by generating rapid, reusable and reliable marginal probability density estimators, giving us access to nuisance-free likelihoods. This is possible through the unique combination of nested sampling, which gives us access to Bayesian evidences, and the marginal Bayesian statistics code MARGARINE. Our method is lossless in the signal parameters, resulting in the same posterior distributions as would be found from a full nested sampling run over all nuisance parameters, and typically quicker than evaluating full likelihoods. We demonstrate our approach by applying it to the combination of posteriors from the Dark Energy Survey and Planck.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源