论文标题
学习移动无线网络的自适应转发策略:资源使用与延迟
Learning an Adaptive Forwarding Strategy for Mobile Wireless Networks: Resource Usage vs. Latency
论文作者
论文摘要
为移动无线网络设计有效的路由策略是充满挑战的,因为需要无缝将路由行为调整为空间多样化和时间变化的网络条件。在这项工作中,我们使用深度加固学习(DEEPRL)来学习此类网络的可扩展和可推广的单复制路由策略。我们做出以下贡献:i)我们设计了一个奖励功能,使DeepRL代理能够明确权衡竞争的网络目标,例如最大程度地减少延迟与每个数据包的传输数量; ii)我们提出了一组新型的关系邻域,路径和上下文功能,以独立于特定的网络拓扑表征移动无线网络和模型设备移动性; iii)我们使用一种灵活的培训方法,使我们可以将所有数据包和设备的数据组合到单个离线集中式培训设置中,以训练单个DEEPRL代理。为了评估通用性和可扩展性,我们在一个移动网络方案上训练我们的DEEPRL代理,然后在其他移动方案上对其进行测试,从而改变了设备和变速箱范围的数量。我们的结果表明,我们学到的单拷贝路由策略在延迟方面优于所有其他策略,即使在没有培训的DEEPRL代理的情况下,也是如此。
Designing effective routing strategies for mobile wireless networks is challenging due to the need to seamlessly adapt routing behavior to spatially diverse and temporally changing network conditions. In this work, we use deep reinforcement learning (DeepRL) to learn a scalable and generalizable single-copy routing strategy for such networks. We make the following contributions: i) we design a reward function that enables the DeepRL agent to explicitly trade-off competing network goals, such as minimizing delay vs. the number of transmissions per packet; ii) we propose a novel set of relational neighborhood, path, and context features to characterize mobile wireless networks and model device mobility independently of a specific network topology; and iii) we use a flexible training approach that allows us to combine data from all packets and devices into a single offline centralized training set to train a single DeepRL agent. To evaluate generalizeability and scalability, we train our DeepRL agent on one mobile network scenario and then test it on other mobile scenarios, varying the number of devices and transmission ranges. Our results show our learned single-copy routing strategy outperforms all other strategies in terms of delay except for the optimal strategy, even on scenarios on which the DeepRL agent was not trained.