论文标题
评估用于部署停车空间分类系统的不同注释策略
Evaluation of Different Annotation Strategies for Deployment of Parking Spaces Classification Systems
论文作者
论文摘要
当使用基于视觉的方法对被占用和空的空地之间的单个停车位进行分类时,人类专家通常需要注释位置,并标记包含目标停车场中收集的图像的训练集,以微调系统。我们建议研究三种注释类型(多边形,边界框和固定尺寸的正方形),提供停车位的不同数据表示。理由是阐明手工艺注释精度和模型性能之间的最佳权衡。我们还调查了在目标停车场微调预训练型号所需的带注释的停车位数。使用PKLOT数据集的实验表明,使用低精度注释(例如固定尺寸的正方形),可以使用少于1,000个标记的样品将模型微调到目标停车场。
When using vision-based approaches to classify individual parking spaces between occupied and empty, human experts often need to annotate the locations and label a training set containing images collected in the target parking lot to fine-tune the system. We propose investigating three annotation types (polygons, bounding boxes, and fixed-size squares), providing different data representations of the parking spaces. The rationale is to elucidate the best trade-off between handcraft annotation precision and model performance. We also investigate the number of annotated parking spaces necessary to fine-tune a pre-trained model in the target parking lot. Experiments using the PKLot dataset show that it is possible to fine-tune a model to the target parking lot with less than 1,000 labeled samples, using low precision annotations such as fixed-size squares.