论文标题

将同质性概括为简单络合物

Generalizing Homophily to Simplicial Complexes

论文作者

Sarker, Arnab, Northrup, Natalie, Jadbabaie, Ali

论文摘要

小组互动经常发生在社交环境中,但是它们在网络模型中的成对关系以外的属性仍未得到探索。在这项工作中,我们同质研究了几乎普遍存在的现象,其中相似的个体比随机的人更有可能彼此形成联系,并在简单复合物上定义了它,这是对超出二元相互作用的网络模型的概括。尽管文献中已经提出了一些群体同质定义,但我们提供了理论和经验的证据,即先前的定义主要在成对相互作用中继承同质的特性,而不是捕获群体动力学的同质性。因此,我们提出了一种新的措施,即$ k $ simplicial同质性,它在群体动力学中适当地识别同质。在16个经验网络中,$ k $ simplicial同质性提供了与成对相互作用的同质措施不相关的信息。此外,我们在识别节点上的元数据何时可用于预测组相互作用时表明$ k $ simplicial同质性的经验价值,而先前的措施是不明智的。

Group interactions occur frequently in social settings, yet their properties beyond pairwise relationships in network models remain unexplored. In this work, we study homophily, the nearly ubiquitous phenomena wherein similar individuals are more likely than random to form connections with one another, and define it on simplicial complexes, a generalization of network models that goes beyond dyadic interactions. While some group homophily definitions have been proposed in the literature, we provide theoretical and empirical evidence that prior definitions mostly inherit properties of homophily in pairwise interactions rather than capture the homophily of group dynamics. Hence, we propose a new measure, $k$-simplicial homophily, which properly identifies homophily in group dynamics. Across 16 empirical networks, $k$-simplicial homophily provides information uncorrelated with homophily measures on pairwise interactions. Moreover, we show the empirical value of $k$-simplicial homophily in identifying when metadata on nodes is useful for predicting group interactions, whereas previous measures are uninformative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源