论文标题
逐步脱蓝色的扩散模型用于粗到精细图像合成
Progressive Deblurring of Diffusion Models for Coarse-to-Fine Image Synthesis
论文作者
论文摘要
最近,扩散模型通过逐渐消除噪声和放大信号,在图像合成中显示出显着的结果。尽管简单的生成过程令人惊讶地效果很好,但这是生成图像数据的最佳方法吗?例如,尽管人类感知对图像的低频更敏感,但扩散模型本身并不认为每个频率分量的相对重要性。因此,为了纳入图像数据的电感偏差,我们提出了一个新颖的生成过程,该过程以粗到精细的方式合成图像。首先,我们通过在旋转的坐标系中扩散具有不同速度的速度,从而概括了标准扩散模型。我们进一步提出了模糊扩散作为特殊情况,其中图像的每个频率分量以不同的速度扩散。具体而言,所提出的模糊扩散由一个向前过程组成,该过程将模糊图像并逐渐增加噪声,然后相应的反向过程deblurs映射并逐渐消除噪声。实验表明,所提出的模型在LSUN卧室和教堂数据集上的FID上优于先前的方法。代码可从https://github.com/sangyun884/blur-diffusion获得。
Recently, diffusion models have shown remarkable results in image synthesis by gradually removing noise and amplifying signals. Although the simple generative process surprisingly works well, is this the best way to generate image data? For instance, despite the fact that human perception is more sensitive to the low frequencies of an image, diffusion models themselves do not consider any relative importance of each frequency component. Therefore, to incorporate the inductive bias for image data, we propose a novel generative process that synthesizes images in a coarse-to-fine manner. First, we generalize the standard diffusion models by enabling diffusion in a rotated coordinate system with different velocities for each component of the vector. We further propose a blur diffusion as a special case, where each frequency component of an image is diffused at different speeds. Specifically, the proposed blur diffusion consists of a forward process that blurs an image and adds noise gradually, after which a corresponding reverse process deblurs an image and removes noise progressively. Experiments show that the proposed model outperforms the previous method in FID on LSUN bedroom and church datasets. Code is available at https://github.com/sangyun884/blur-diffusion.