论文标题
通过周期性的力量研究在吸附的聚合物中进行解压缩过渡
Study of unzipping transitions in an adsorbed polymer by a periodic force
论文作者
论文摘要
使用Monte Carlo模拟,我们研究了在表面(或壁)上解开吸附的均质聚合物的解压缩中的动态跃迁。我们考虑三种不同类型的表面。聚合物的一端始终保持锚定,另一端单体受到频率$ω$和振幅$ g_0 $的周期性力。我们观察到,力距离等温线在所有三种情况下均显示磁滞回路。在所有三种情况下,都发现磁滞回路的面积,$ a_ {loop} $,在较高频率制度中缩放为$ 1/ω$,而$ g_0^αω^β$带有指数$α= 1 $ $α= 1 $和$β= 1.25 $的$ g_0^αω^β$。指数$α$和$β$的值的值类似于在较早的DNA链的蒙特卡洛模拟研究中获得的指数和较长DNA链的Langevin Dynamics Simulation仿真研究。
Using Monte Carlo simulations, we study the dynamic transitions in the unzipping of an adsorbed homogeneous polymer on a surface (or wall). We consider three different types of surfaces. One end of the polymer is always kept anchored, and other end monomer is subjected to a periodic force with frequency $ω$ and amplitude $g_0$. We observe that the force-distance isotherms show hysteresis loops in all the three cases. For all the three cases, it is found that the area of the hysteresis loop, $A_{loop}$, scales as $1/ω$ in the higher frequency regime, and as $g_0^α ω^β$ with exponents $α= 1$ and $β= 1.25$ in the lower frequency regime. The values of exponents $α$ and $β$ are similar to the exponents obtained in the earlier Monte Carlo simulation studies of DNA chains and a Langevin dynamics simulation study of longer DNA chains.