论文标题

主动分布式紧急响应,并分配异质

Proactive Distributed Emergency Response with Heterogeneous Tasks Allocation

论文作者

Darko, Justice, Park, Hyoshin

论文摘要

传统上,交通事故管理(TIM)计划将紧急资源的部署到即时事件请求协调,而无需容纳环境中事件演变的相互依存关系。但是,在做出当前部署决策的同时忽略环境中事件演变的固有相互依赖性是短暂的,而由此产生的天真部署策略可能会大大恶化整个事件延迟对网络的影响。环境中事件进化的相互依存关系,包括事件事件之间的事件,以及在做出当前阶段部署决策时,应通过浏览模型来考虑近未实现请求的资源可用性与预期的即时事件请求期间的相互依存关系。这项研究基于分布式约束优化问题(DCOP)开发了一个新的主动框架,以解决上述局限性,克服了无法适应TIM问题中依赖关系的常规TIM模型。此外,配制了优化目标以结合无人机(UAV)。无人机在蒂姆(Tim)中的作用包括探索不确定的交通状况,检测出意外事件以及从道路交通传感器中增加信息。我们对多个TIM情景模型的鲁棒性分析显示了使用本地搜索启示术的令人满意的性能。总体而言,我们的模型报告说,与常规TIM模型相比,总事件延迟的大幅减少。有了无人机的支持,我们证明了不同事件数量的总事件延迟在5%至45%之间的进一步减少。无人机的主动感应会缩短紧急车辆的响应时间,并减少与估计的事件延迟影响相关的不确定性。

Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring inherent interdependencies on the evolution of incidents in the environment while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the environment, including those between incident occurrences, and those between resource availability in near-future requests and the anticipated duration of the immediate incident request, should be considered through a look-ahead model when making current-stage deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in the TIM problem. Furthermore, the optimization objective is formulated to incorporate Unmanned Aerial Vehicles (UAVs). The UAVs' role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for the different number of incidents. UAV's active sensing can shorten response time of emergency vehicles, and a reduction in uncertainties associated with the estimated incident delay impact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源