论文标题
回溯$β$ CEP Star HD 129929的内部旋转历史
Backtracing the internal rotation history of the $β$ Cep star HD 129929
论文作者
论文摘要
HD 129929是一种缓慢旋转的$β$ Cephei脉动器,具有丰富的检测到的振荡频谱,包括两个旋转多层。 Atteroseiscic的解释揭示了这款$ \ sim $ 9.35 m的巨大恒星中存在径向差异旋转。确实,恒星核心估计旋转$ \ sim $ 3.6 $ 3.6倍。因此,表面旋转得出为$ \ sim $ 2 km/s。这款巨大的恒星代表了对主要序列和进化的低质量恒星的大量空间光度法结果的理想反应部分。后者揭示了一幅新的,通常是出乎意料的图片,描绘了作用在恒星内部的角度动量传输过程。我们以新的方式调查了HD 129929内部旋转的约束,重点是在大型恒星的主要序列中对内部旋转进化的解释。我们测试角动量的流体动力和磁不稳定性传输过程。我们使用了早期工作中获得的最佳星号模型。我们校准了包括不同运输过程的旋转(包括旋转)的恒星模型,以重现该参考模型。然后,我们研究了一个过程是否受到基于Atteroseiscic多重组的拟合度重现HD 129929的旋转曲线。泰勒磁不稳定性对角动量传输的影响预测核心与表面旋转速率的比率仅为1.6,而最近修订的该机制的处方可预测固体体体旋转。与小星言震的相比,两者都太低了。仅具有流体动力学过程的模型与纯种震次测量非常吻合。令人惊讶的是,我们还可以对零年龄序列的旋转曲线构成限制:可能,核心和表面旋转之间的比率至少为$ \ sim $ 1.7。
HD 129929 is a slowly-rotating $β$ Cephei pulsator with a rich spectrum of detected oscillations, including two rotational multiplets. The asteroseismic interpretation revealed the presence of radial differential rotation in this massive star of $\sim$9.35 M . The stellar core is indeed estimated to spin $\sim$3.6 times faster than the surface. The surface rotation was consequently derived as $\sim$2 km/s. This massive star represents an ideal counter-part to the wealth of space-based photometry results for main-sequence and evolved low-mass stars. Those latter have revealed a new, and often unexpected, picture of the angular momentum transport processes acting in stellar interiors. We investigate in a new way the constraints on the internal rotation of HD 129929, focusing on their interpretation for the evolution of the internal rotation during the main sequence of a massive star. We test separately hydrodynamic and magnetic instability transport processes of angular momentum. We used the best asteroseismic model obtained in an earlier work. We calibrated stellar models including rotation, with different transport processes, to reproduce that reference model. We then looked whether one process is favoured to reproduce the rotation profile of HD 129929, based on the fit of the asteroseismic multiplets. The impact of the Tayler magnetic instability on the angular momentum transport predicts a ratio of the core-to-surface rotation rate of only 1.6, while the recently revised prescription of this mechanism predicts solid-body rotation. Both are too low in comparison with the asteroseismic inference. The models with only hydrodynamic processes are in good agreement with the asteroseismic measurements. Strikingly, we can also get a constraint on the profile of rotation on the zero age main sequence: likely, the ratio between the core and surface rotation was at least $\sim$1.7.