论文标题

与具有复杂系数的发散形式运算符相关的半群最大运算符

On semigroup maximal operators associated with divergence-form operators with complex coefficients

论文作者

Carbonaro, Andrea, Dragičević, Oliver

论文摘要

令$ l_ {a} = - {\ rm div}(a \ nabla)$为椭圆形发散形式运算符,具有有限的复杂系数在任意开放集合集合$ω\ subseteq \ subseteq \ mathbb {r}^{d} $上受到混合边界条件。我们证明,最大运算符$ {\ mathscr m}^{a} f = \ sup_ {t> 0} | \ exp(-tl_ {a})f | $在$ l^{p}(ω)$中以$ l^{p}(ω)$限制,只要$ a $ a $ a $ a $ p $ - p $ -p $ - eelliptic of of of [10]。该结果的相关性是,通常,由$ -l_ {a} $生成的半群既不是$ l^{\ infty} $也不是积极的,因此既不是hopf--dunford-schwartz-schwartz maximal ergodic定理[15,chap。我们还表明,如果$ d \ geq 3 $以及与$ l_ {a} $相关的sesquilinear形式的域,则嵌入$ l^{2^{*}}}(ω)$,$ 2^{*} = 2d/(dd/(dd/(d-d/divry))的范围$ l^{p} $ - 间隔$(RD/((R-1)D+2),RD/(D-2))$,其中$ r \ geq 2 $是$ a $ a $ as $ r $ elliptic。通过我们的方法,我们还能够研究两参数最大操作员$ \ sup_ {s,t> 0} | t^{a_ {1}} _ {s} t^t^{a_ {2}} _ {t} _ {t} f | $ $。

Let $L_{A}=-{\rm div}(A\nabla)$ be an elliptic divergence form operator with bounded complex coefficients subject to mixed boundary conditions on an arbitrary open set $Ω\subseteq\mathbb{R}^{d}$. We prove that the maximal operator ${\mathscr M}^{A} f=\sup_{t>0}|\exp(-tL_{A})f|$ is bounded in $L^{p}(Ω)$, whenever $A$ is $p$-elliptic in the sense of [10]. The relevance of this result is that, in general, the semigroup generated by $-L_{A}$ is neither contractive in $L^{\infty}$ nor positive, therefore neither the Hopf--Dunford--Schwartz maximal ergodic theorem [15, Chap.~VIII] nor Akcoglu's maximal ergodic theorem [1] can be used. We also show that if $d\geq 3$ and the domain of the sesquilinear form associated with $L_{A}$ embeds into $L^{2^{*}}(Ω)$ with $2^{*}=2d/(d-2)$, then the range of $L^{p}$-boundedness of ${\mathscr M}^{A}$ improves into the interval $(rd/((r-1)d+2),rd/(d-2))$, where $r\geq 2$ is such that $A$ is $r$-elliptic. With our method we are also able to study the boundedness of the two-parameter maximal operator $\sup_{s,t>0}|T^{A_{1}}_{s}T^{A_{2}}_{t}f|$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源