论文标题
MNSB2O6中的中子衍射:具有耦合手性的螺旋极磁体中的磁性和结构结构域
Neutron diffraction in MnSb2O6: Magnetic and structural domains in a helicoidal polar magnet with coupled chiralities
论文作者
论文摘要
mnsb $ _ {2} $ o $ _ {6} $基于结构性手性$ p $ 321空间群#150,其中磁性mn $^{2+} $ moments($ s = 5/2 $,$ s,$ l \ l \ 0 $ 0 $)订购Antifermagnetaly in $ t_ \ t_ \ nrul finl unl finl unl finl finl unl full finl flun flun flul finl finl lang。 (ba $ _3 $ nbfe $ _3 $ si $ _2 $ _2 $ o $ _ {14} $),其中低温磁力基于适当的螺旋,其特征是以时间持续时间为特征,磁性磁性'chirality'Mn $^{2+}低温,而是通过时间到矢量“磁性”极性描述。已经发现了倾斜的循环结构[M. Kinoshita等。物理。莱特牧师。 117,047201(2016)]促进在施加的磁场下进行铁电开关。在这项工作中,我们应用了两极化和非极化的中子衍射,分析了MNSB $ _ {2} $ o $ $ _ {6} $中的磁性和核结构,目的是了解这种磁电耦合。我们找不到证据表明螺旋磁结构有一个旋转包膜轴之一,远离了环形$ c $轴。但是,在应用磁场$ \时,可以将旋转平面倾斜,从而产生旋转旋转平面,从而导致旋转旋转平面,该旋转旋转平面朝向扭曲的螺旋(零环形组件(零环形组件)(零环形组件)的进化(我们提议的基于$ 2 t)的范围。仅是结构性手性域的失衡。
MnSb$_{2}$O$_{6}$ is based on the structural chiral $P$321 space group #150 where the magnetic Mn$^{2+}$ moments ($S=5/2$, $L\approx 0$) order antiferromagnetically at $T_\mathrm{N}=12$ K. Unlike the related iron based langasite (Ba$_3$NbFe$_3$Si$_2$O$_{14}$) where the low temperature magnetism is based on a proper helix characterized by a time-even pseudoscalar `magnetic' chirality, the Mn$^{2+}$ ions in MnSb$_{2}$O$_{6}$ order with a cycloidal structure at low temperatures, described instead by a time-even vector `magnetic' polarity. A tilted cycloidal structure has been found [M. Kinoshita et al. Phys. Rev. Lett. 117, 047201 (2016)] to facilitate ferroelectric switching under an applied magnetic field. In this work, we apply polarized and unpolarized neutron diffraction analyzing the magnetic and nuclear structures in MnSb$_{2}$O$_{6}$ with the aim of understanding this magnetoelectric coupling. We find no evidence for a helicoidal magnetic structure with one of the spin envelope axes tilted away from the cycloidal $c$-axis. However, on application of a magnetic field $\parallel$ $\vec{c}$ the spin rotation plane can be tilted, giving rise to a cycloid-helix admixture that evolves towards a distorted helix (zero cycloidal component) for fields great than $\approx$ 2 T. We propose a mechanism for the previously reported ferroelectric switching based on coupled structural and magnetic chiralities requiring only an imbalance of structural chiral domains.