论文标题
X射线男性的机会性髋部骨折风险预测:男性骨质疏松症的发现(MROS)研究
Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study
论文作者
论文摘要
骨质疏松症是一种常见疾病,可增加骨折风险。髋部骨折,尤其是在老年人中,导致发病率增加,生活质量降低和死亡率增加。骨质疏松症在骨折前是一种沉默的疾病,通常仍未被诊断和治疗。通过双能X射线吸收仪(DXA)评估的面骨矿物质密度(ABMD)是骨质疏松症诊断的金标准方法,因此也用于将来的骨折预测(Pregnosticic)。但是,所需的特殊设备无处可寻,尤其是发展中国家的患者。我们提出了一个深度学习分类模型(形式),该模型可以直接预测来自计算机断层扫描(CT)数据的普通X光片(X射线)或2D投影图像的髋部断裂风险。我们的方法是完全自动化的,因此非常适合机会性筛查设置,确定了更广泛的人群中的高风险患者而没有额外的筛查。对男性骨质疏松症(MROS)研究的X射线和CT投影进行了训练和评估。使用了3108张X射线(89例入射髋部骨折)或2150 CTS(80个入射髋部骨折),并使用了80/20分。我们显示,形式可以正确预测10年的髋部断裂风险,而验证AUC为81.44 +-3.11% / 81.04 +-5.54%(平均 +-STD),包括其他信息,例如年龄,BMI,秋季历史和健康背景,分别在X-Ray和CT COHORT上进行5倍的交叉验证。我们的方法显着(P <0.01)在X射线队列上分别以70.19 +-6.58和74.72 +-7.21分别优于先前的方法,例如Cox比例危害模型和\ frax。我们的模型在两个基于髋关节ABMD的预测方面都优于较高。我们有信心形式可以在早期阶段改善骨质疏松症的诊断。
Osteoporosis is a common disease that increases fracture risk. Hip fractures, especially in elderly people, lead to increased morbidity, decreased quality of life and increased mortality. Being a silent disease before fracture, osteoporosis often remains undiagnosed and untreated. Areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry (DXA) is the gold-standard method for osteoporosis diagnosis and hence also for future fracture prediction (prognostic). However, the required special equipment is not broadly available everywhere, in particular not to patients in developing countries. We propose a deep learning classification model (FORM) that can directly predict hip fracture risk from either plain radiographs (X-ray) or 2D projection images of computed tomography (CT) data. Our method is fully automated and therefore well suited for opportunistic screening settings, identifying high risk patients in a broader population without additional screening. FORM was trained and evaluated on X-rays and CT projections from the Osteoporosis in Men (MrOS) study. 3108 X-rays (89 incident hip fractures) or 2150 CTs (80 incident hip fractures) with a 80/20 split were used. We show that FORM can correctly predict the 10-year hip fracture risk with a validation AUC of 81.44 +- 3.11% / 81.04 +- 5.54% (mean +- STD) including additional information like age, BMI, fall history and health background across a 5-fold cross validation on the X-ray and CT cohort, respectively. Our approach significantly (p < 0.01) outperforms previous methods like Cox Proportional-Hazards Model and \frax with 70.19 +- 6.58 and 74.72 +- 7.21 respectively on the X-ray cohort. Our model outperform on both cohorts hip aBMD based predictions. We are confident that FORM can contribute on improving osteoporosis diagnosis at an early stage.