论文标题

动态局部聚合网络,具有自适应簇的异常检测

Dynamic Local Aggregation Network with Adaptive Clusterer for Anomaly Detection

论文作者

Yang, Zhiwei, Wu, Peng, Liu, Jing, Liu, Xiaotao

论文摘要

基于内存仪的自动编码器(AE)的异常检测方法的现有方法具有以下缺点:(1)建立内存库需要额外的内存空间。 (2)主观假设的固定原型数量忽略了数据特征差异和多样性。为了克服这些弊端,我们引入了DLAN-AC,这是一种具有自适应簇的动态局部聚合网络,用于异常检测。首先,所提出的DLAN可以自动从AE学习和汇总高级特征,以获得更多代表性的原型,同时释放额外的存储空间。其次,所提出的AC可以适应性聚类视频数据,以获取具有先验信息的初始原型。此外,我们还提出了动态冗余聚类策略(DRC),以使DLAN能够自动消除不影响原型的特征簇。基准上的广泛实验表明,DLAN-AC的表现优于大多数现有方法,从而验证了我们方法的有效性。我们的代码可在https://github.com/beyond-zw/dlan-ac上公开获取。

Existing methods for anomaly detection based on memory-augmented autoencoder (AE) have the following drawbacks: (1) Establishing a memory bank requires additional memory space. (2) The fixed number of prototypes from subjective assumptions ignores the data feature differences and diversity. To overcome these drawbacks, we introduce DLAN-AC, a Dynamic Local Aggregation Network with Adaptive Clusterer, for anomaly detection. First, The proposed DLAN can automatically learn and aggregate high-level features from the AE to obtain more representative prototypes, while freeing up extra memory space. Second, The proposed AC can adaptively cluster video data to derive initial prototypes with prior information. In addition, we also propose a dynamic redundant clustering strategy (DRCS) to enable DLAN for automatically eliminating feature clusters that do not contribute to the construction of prototypes. Extensive experiments on benchmarks demonstrate that DLAN-AC outperforms most existing methods, validating the effectiveness of our method. Our code is publicly available at https://github.com/Beyond-Zw/DLAN-AC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源