论文标题

通过denoing通过联合学习优化图像压缩

Optimizing Image Compression via Joint Learning with Denoising

论文作者

Cheng, Ka Leong, Xie, Yueqi, Chen, Qifeng

论文摘要

由于智能手机摄像机中配备了相对较小的传感器,通常在当今捕获的图像中通常存在高噪声,在这种情况下,噪声给有损图像压缩算法带来了额外的挑战。如果没有能力分辨图像细节和噪声之间的差异,一般图像压缩方法分配了其他位,以在压缩过程中明确存储不需要的图像噪声,并在减压期间恢复令人不快的嘈杂图像。基于观察结果,我们优化图像压缩算法是噪声吸引的,因为关节降解和压缩以解决位不当分配问题。关键是要通过消除压缩过程中不希望的噪声将原始噪声图像转换为无噪声的位,以后将钻头解压缩为干净的图像。具体来说,我们提出了一种新颖的两分支,重量分担的架构,并具有插件功能Denoisers,以允许在几乎没有计算成本的情况下简单有效地实现目标。实验结果表明,我们的方法对合成数据集和现实数据集的现有基线方法有了显着改善。我们的源代码可从https://github.com/felixcheng97/denoisecompression获得。

High levels of noise usually exist in today's captured images due to the relatively small sensors equipped in the smartphone cameras, where the noise brings extra challenges to lossy image compression algorithms. Without the capacity to tell the difference between image details and noise, general image compression methods allocate additional bits to explicitly store the undesired image noise during compression and restore the unpleasant noisy image during decompression. Based on the observations, we optimize the image compression algorithm to be noise-aware as joint denoising and compression to resolve the bits misallocation problem. The key is to transform the original noisy images to noise-free bits by eliminating the undesired noise during compression, where the bits are later decompressed as clean images. Specifically, we propose a novel two-branch, weight-sharing architecture with plug-in feature denoisers to allow a simple and effective realization of the goal with little computational cost. Experimental results show that our method gains a significant improvement over the existing baseline methods on both the synthetic and real-world datasets. Our source code is available at https://github.com/felixcheng97/DenoiseCompression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源