论文标题
在线学习深层SDF地图,以进行机器人导航和探索
Learning Deep SDF Maps Online for Robot Navigation and Exploration
论文作者
论文摘要
我们提出了一种算法,以(i)在线学习具有带有激光雷达的机器人的深度签名距离功能(SDF),以代表3D环境几何形状,并且(ii)鉴于此深度学习的地图,(ii)计划无碰撞轨迹。我们的算法采用了传入的激光扫描,并不断优化神经网络,以代表其当前附近环境的SDF。当SDF网络质量饱和时,我们将缓存网络的副本,以及一个学习的置信度指标,并初始化新的SDF网络以继续映射环境的新区域。然后,我们通过信心加权的计划加以加以加以加以加盟的本地SDF,以提供全球SDF进行计划。为了计划,我们使用顺序凸模型预测控制(MPC)算法。 MPC规划师优化了机器人动态可行的轨迹,同时没有与全局SDF中映射的障碍物相撞。我们表明,与现有在线SDF培训的现有方法相比,我们的在线映射算法产生的地图更高。在Webots Simulator中,我们进一步展示了在线运行的组合映射器和计划者 - 自动导航,并且在未知环境中没有碰撞。
We propose an algorithm to (i) learn online a deep signed distance function (SDF) with a LiDAR-equipped robot to represent the 3D environment geometry, and (ii) plan collision-free trajectories given this deep learned map. Our algorithm takes a stream of incoming LiDAR scans and continually optimizes a neural network to represent the SDF of the environment around its current vicinity. When the SDF network quality saturates, we cache a copy of the network, along with a learned confidence metric, and initialize a new SDF network to continue mapping new regions of the environment. We then concatenate all the cached local SDFs through a confidence-weighted scheme to give a global SDF for planning. For planning, we make use of a sequential convex model predictive control (MPC) algorithm. The MPC planner optimizes a dynamically feasible trajectory for the robot while enforcing no collisions with obstacles mapped in the global SDF. We show that our online mapping algorithm produces higher-quality maps than existing methods for online SDF training. In the WeBots simulator, we further showcase the combined mapper and planner running online -- navigating autonomously and without collisions in an unknown environment.