论文标题

从施瓦茨空间到梅林变换

From Schwartz space to Mellin transform

论文作者

Krukowski, Mateusz

论文摘要

本文背后的主要动机是试图对梅林变换的方式进行详尽的解释,这在类似于著名的Gelfand Transform的过程中自然而然地产生。我们从研究一类Schwartz函数的研究开始,$ \ Mathcal {s}(\ Mathbb {r} _+),$,其中$ \ mathbb {r} _+$是所有正实际数字的集合。建立了此Fréchet空间的各种属性,接下来是Mellin卷积运算符的介绍,该操作员将$ \ Mathcal {s}(\ Mathbb {r} _+)$变成了交换性fréchet代数。我们提供了一个简单的Mellin-Young卷积不平等的证明,并继续证明结构空间$δ(\ Mathcal {s}(\ Mathbb {r} _+),\ star),\ star)$(非零,线性,连续,连续和乘函数的空间\ mathbb {r} $)与$ \ mathbb {r}。$最终,我们证明了梅林变换在一个过程中出现,与gelfand变换的构建具有惊人的相似之处。

The primary motivation behind this paper is an attempt to provide a thorough explanation of how the Mellin transform arises naturally in a process akin to the construction of the celebrated Gelfand transform. We commence with a study of a class of Schwartz functions $\mathcal{S}(\mathbb{R}_+),$ where $\mathbb{R}_+$ is the set of all positive real numbers. Various properties of this Fréchet space are established and what follows is an introduction of the Mellin convolution operator, which turns $\mathcal{S}(\mathbb{R}_+)$ into a commutative Fréchet algebra. We provide a simple proof of Mellin-Young convolution inequality and go on to prove that the structure space $Δ(\mathcal{S}(\mathbb{R}_+),\star)$ (the space of nonzero, linear, continuous and multiplicative functionals $m:\mathcal{S}(\mathbb{R}_+)\longrightarrow \mathbb{R}$) is homeomorphic to $\mathbb{R}.$ Finally, we show that the Mellin transform arises in a process which bears a striking resemblance to the construction of the Gelfand transform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源