论文标题

设计一个照明感知网络,以进行深度图像重新考虑

Designing An Illumination-Aware Network for Deep Image Relighting

论文作者

Zhu, Zuo-Liang, Li, Zhen, Zhang, Rui-Xun, Guo, Chun-Le, Cheng, Ming-Ming

论文摘要

照明是摄影的决定因素,它影响了情感的样式,表达甚至图像的质量。实际上,创建或找到满足的照明条件是费力且耗时的,因此开发一种技术来操纵图像中的照明是非常有价值的。尽管以前的作品已经基于重新保留图像的物理观点探索了技术,但是对于生成合理的图像,必须进行广泛的监督和先验知识,从而限制了这些作品的概括能力。相比之下,我们采用图像到图像翻译的观点,并隐含地合并了传统物理观点的想法。在本文中,我们提出了一个照明感知网络(IAN),该网络遵循从分层采样到逐渐从单个图像中逐步重新重新效率的指导。此外,旨在近似物理渲染过程并提取光源的精确描述以进行进一步操作,旨在近似物理渲染过程。我们还引入了一个深度引导的几何编码器,以获取有价值的几何形状和与结构相关的表示,一旦深度信息可用。实验结果表明,与以前的最新方法相比,我们提出的方法产生的定量和定性重新确定结果更好。代码和模型可在https://github.com/nk-cs-zzl/ian上公开可用。

Lighting is a determining factor in photography that affects the style, expression of emotion, and even quality of images. Creating or finding satisfying lighting conditions, in reality, is laborious and time-consuming, so it is of great value to develop a technology to manipulate illumination in an image as post-processing. Although previous works have explored techniques based on the physical viewpoint for relighting images, extensive supervisions and prior knowledge are necessary to generate reasonable images, restricting the generalization ability of these works. In contrast, we take the viewpoint of image-to-image translation and implicitly merge ideas of the conventional physical viewpoint. In this paper, we present an Illumination-Aware Network (IAN) which follows the guidance from hierarchical sampling to progressively relight a scene from a single image with high efficiency. In addition, an Illumination-Aware Residual Block (IARB) is designed to approximate the physical rendering process and to extract precise descriptors of light sources for further manipulations. We also introduce a depth-guided geometry encoder for acquiring valuable geometry- and structure-related representations once the depth information is available. Experimental results show that our proposed method produces better quantitative and qualitative relighting results than previous state-of-the-art methods. The code and models are publicly available on https://github.com/NK-CS-ZZL/IAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源