论文标题

使用非语言提示共同关联的人类相互作用分析:调查

Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A Survey

论文作者

Beyan, Cigdem, Vinciarelli, Alessandro, Del Bue, Alessio

论文摘要

通过使用非语言交流作为社会和心理现象的可衡量证据,已经解决了自动化的共同存在的人类相互作用分析。我们调查了计算研究(自2010年以来)检测与社会特征(例如领导力,主导地位,人格特征),社会角色/关系和互动动态有关的现象(例如,群体凝聚力,参与,互动,Rapport)。我们的目标是确定导致有效绩效的非语言提示和计算方法。这项调查与同行不同,涉及最广泛的社会现象和互动环境(独立的对话,会议,二元组和人群)。我们还提供了有关相关数据集的全面摘要,并概述了未来的研究方向,该方向涉及人工智能,数据集策展和隐私互动分析的实施。一些主要观察结果是:最常使用的非语言提示,计算方法,相互作用环境和传感方法是说话活动,支持向量机器以及由配备麦克风和摄像头配备的3-4人组成的会议;多模式特征表现更好。深度学习体系结构的整体表现提高了,但是存在许多现象,这些现象从未通过深层模型实施。我们还确定了一些局限性,例如缺乏可扩展基准,注释可靠性测试,跨数据库实验和解释性分析。

Automated co-located human-human interaction analysis has been addressed by the use of nonverbal communication as measurable evidence of social and psychological phenomena. We survey the computing studies (since 2010) detecting phenomena related to social traits (e.g., leadership, dominance, personality traits), social roles/relations, and interaction dynamics (e.g., group cohesion, engagement, rapport). Our target is to identify the nonverbal cues and computational methodologies resulting in effective performance. This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings (free-standing conversations, meetings, dyads, and crowds). We also present a comprehensive summary of the related datasets and outline future research directions which are regarding the implementation of artificial intelligence, dataset curation, and privacy-preserving interaction analysis. Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively; multimodal features are prominently performing better; deep learning architectures showed improved performance in overall, but there exist many phenomena whose detection has never been implemented through deep models. We also identified several limitations such as the lack of scalable benchmarks, annotation reliability tests, cross-dataset experiments, and explainability analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源