论文标题

MABE22:一种多任务的多任务基准,用于学习的行为表示

MABe22: A Multi-Species Multi-Task Benchmark for Learned Representations of Behavior

论文作者

Sun, Jennifer J., Marks, Markus, Ulmer, Andrew, Chakraborty, Dipam, Geuther, Brian, Hayes, Edward, Jia, Heng, Kumar, Vivek, Oleszko, Sebastian, Partridge, Zachary, Peelman, Milan, Robie, Alice, Schretter, Catherine E., Sheppard, Keith, Sun, Chao, Uttarwar, Param, Wagner, Julian M., Werner, Eric, Parker, Joseph, Perona, Pietro, Yue, Yisong, Branson, Kristin, Kennedy, Ann

论文摘要

我们介绍了MABE22,这是一种大规模,多代理视频和轨迹基准,以评估学习的行为表示的质量。该数据集是从各种生物学实验中收集的,其中包括相互作用的小鼠的三联体(470万帧视频+姿势跟踪数据,仅1000万帧姿势),共生甲壳虫 - 恒定的相互作用(1000万帧视频数据)和一组相互作用的苍蝇(440万范围的pose Tracking Tracking数据)。伴随这些数据,我们引入了一个现实生活中的下游分析任务小组,以评估他们如何保留有关实验条件的信息(例如应变,一天中的时间,光遗传学刺激)和动物行为的信息。我们测试了多个最先进的自我监督视频和轨迹表示方法,以证明我们的基准的使用,揭示了使用人类动作数据集开发的方法并未完全转化为动物数据集。我们希望我们的基准和数据集鼓励对跨物种和环境的行为表示方法进行更广泛的探索。

We introduce MABe22, a large-scale, multi-agent video and trajectory benchmark to assess the quality of learned behavior representations. This dataset is collected from a variety of biology experiments, and includes triplets of interacting mice (4.7 million frames video+pose tracking data, 10 million frames pose only), symbiotic beetle-ant interactions (10 million frames video data), and groups of interacting flies (4.4 million frames of pose tracking data). Accompanying these data, we introduce a panel of real-life downstream analysis tasks to assess the quality of learned representations by evaluating how well they preserve information about the experimental conditions (e.g. strain, time of day, optogenetic stimulation) and animal behavior. We test multiple state-of-the-art self-supervised video and trajectory representation learning methods to demonstrate the use of our benchmark, revealing that methods developed using human action datasets do not fully translate to animal datasets. We hope that our benchmark and dataset encourage a broader exploration of behavior representation learning methods across species and settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源