论文标题

DC-Shadownet:使用无监督的域分类器引导网络的单图像硬阴影去除

DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised Domain-Classifier Guided Network

论文作者

Jin, Yeying, Sharma, Aashish, Tan, Robby T.

论文摘要

从单个图像中删除阴影通常仍然是一个空旷的问题。大多数现有的基于学习的方法都使用监督的学习,并需要大量的配对图像(阴影和相应的非阴影图像)进行培训。最近的无监督方法,mask-shadowgan〜 \ cite {hu19},解决了这一限制。但是,它需要一个二进制掩码来表示阴影区域,从而使其不适合柔软的阴影。为了解决这个问题,在本文中,我们提出了一个无监督的域分类器引导的影子删除网络DC-Shadownet。具体而言,我们建议将无阴影/无阴影域分类器集成到发电机及其歧视器中,从而使它们能够专注于阴影区域。为了训练我们的网络,我们基于基于物理的无阴影色彩,阴影般的感知特征和边界平滑度引入了新的损失。此外,我们表明我们的无监督网络可用于测试时间培训,以进一步改善结果。我们的实验表明,所有这些新颖的组件都可以使我们的方法处理柔和的阴影,并且比现有的最新阴影去除方法在定量和定性上都能在硬阴影上表现更好。我们的代码可在:\ url {https://github.com/jinyeying/dc-shadownet-hard-and-and-soft-soft-romoval}中获得。

Shadow removal from a single image is generally still an open problem. Most existing learning-based methods use supervised learning and require a large number of paired images (shadow and corresponding non-shadow images) for training. A recent unsupervised method, Mask-ShadowGAN~\cite{Hu19}, addresses this limitation. However, it requires a binary mask to represent shadow regions, making it inapplicable to soft shadows. To address the problem, in this paper, we propose an unsupervised domain-classifier guided shadow removal network, DC-ShadowNet. Specifically, we propose to integrate a shadow/shadow-free domain classifier into a generator and its discriminator, enabling them to focus on shadow regions. To train our network, we introduce novel losses based on physics-based shadow-free chromaticity, shadow-robust perceptual features, and boundary smoothness. Moreover, we show that our unsupervised network can be used for test-time training that further improves the results. Our experiments show that all these novel components allow our method to handle soft shadows, and also to perform better on hard shadows both quantitatively and qualitatively than the existing state-of-the-art shadow removal methods. Our code is available at: \url{https://github.com/jinyeying/DC-ShadowNet-Hard-and-Soft-Shadow-Removal}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源