论文标题
时间显着性查询网络,用于有效的视频识别
Temporal Saliency Query Network for Efficient Video Recognition
论文作者
论文摘要
有效的视频识别是一个热点研究主题,具有互联网和移动设备上多媒体数据的爆炸性增长。大多数现有方法选择显着框架,而没有意识到特定于类的显着性分数,这忽略了框架显着性及其归属类别之间的隐式关联。为了减轻这个问题,我们设计了一种新颖的时间显着性查询(TSQ)机制,该机制引入了特定于类的信息,以提供显着性测量的细粒线索。具体而言,我们将特定于类的显着性测量过程建模为查询响应任务。对于每个类别,它的常见模式被用作查询,最突出的框架对其进行了响应。然后,计算出的相似性被用作框架显着性得分。为了实现这一目标,我们提出了一个时间显着性查询网络(TSQNET),其中包括基于视觉外观相似性和文本事件对象关系的TSQ机制的两个实例化。之后,实施跨模式相互作用以促进它们之间的信息交换。最后,我们使用了两种模式生成的最自信类别的特定班级销售,以执行显着框架的选择。广泛的实验通过在ActivityNet,FCVID和迷你运动数据集上实现最新结果来证明我们方法的有效性。我们的项目页面位于https://lawrencexia2008.github.io/projects/tsqnet。
Efficient video recognition is a hot-spot research topic with the explosive growth of multimedia data on the Internet and mobile devices. Most existing methods select the salient frames without awareness of the class-specific saliency scores, which neglect the implicit association between the saliency of frames and its belonging category. To alleviate this issue, we devise a novel Temporal Saliency Query (TSQ) mechanism, which introduces class-specific information to provide fine-grained cues for saliency measurement. Specifically, we model the class-specific saliency measuring process as a query-response task. For each category, the common pattern of it is employed as a query and the most salient frames are responded to it. Then, the calculated similarities are adopted as the frame saliency scores. To achieve it, we propose a Temporal Saliency Query Network (TSQNet) that includes two instantiations of the TSQ mechanism based on visual appearance similarities and textual event-object relations. Afterward, cross-modality interactions are imposed to promote the information exchange between them. Finally, we use the class-specific saliencies of the most confident categories generated by two modalities to perform the selection of salient frames. Extensive experiments demonstrate the effectiveness of our method by achieving state-of-the-art results on ActivityNet, FCVID and Mini-Kinetics datasets. Our project page is at https://lawrencexia2008.github.io/projects/tsqnet .